Discussion
by K. Storesletten, B. Zhao, & F. Zilibotti

Discussant: Gregor Boehl

Uni Bonn

Konstanz Seminar 2022
Summary I.

Observed:

- BC in developing countries differ systematically from BC in mature countries.

- Countries with declining agriculture sector:
 - smooth *aggregate* employment fluctuations
 - strong, procyclical labor reallocation between agriculture & non-agriculture
 - decline in agriculture accelerates during booms

- Developed countries:
 - Procyclical aggregate employment
 - Acyclical agricultural employment
Summary I.

Figure 2: Modernization of agriculture: cross-country evidence
Summary I.
Summary I.

(a) USA

(b) China

(c) USA

(d) China

Discussant: Gregor Boehl 1/7
Proposed mechanism:

- Modernization of agricultural sector is key
- Capital intensive modern agricultural sector crowds out labor intensive traditional agriculture
- TFP relocates workers out of traditional agricultural sector, causing boost in productivity but not in employment
- TFP drives BC and changes how TFP drives BC
Summary II.

(a) Share of labor in each sector
- Nonagric.'s share in total employment (%)
- Modern agric.'s share in total employment (%)
- Traditional agric.'s share in total employment (%)

(b) Factor prices
- Wage rate
- Rental rate of capital

(c) Productivity gap
- Productivity gap

(d) Relative K-Y ratio in agriculture to nonagriculture
- Relative K-Y ratio (Agr./Nonagr.)
Summary II.

Discussant: Gregor Boehl
The ingredients:

1. Strong empirical section
2. Continuous time model:
 ▶ Nice closed form expressions
 ▶ Estimation
3. Discrete time model for quantitative exercises
4. International evidence as a robustness exercise
The history of the paper

*Storesletten: Department of Economics, University of Minnesota, 1925 Fourth Street S, Minneapolis MN, United States, kstoresl@umn.edu. Zhao: National School of Development, Peking University, No.8 Yiheyuan Road, Haidian District, Beijing, China, zhaobo@nsd.pku.edu.cn. Zilibotti: Department of Economics, Yale University, fabrizio.zilibotti@yale.edu, 28 Hillhouse Ave., New Haven CT, United States. We thank Huihuang Zhu and Pariroo Rattan for excellent research assistance. We also thank seminar participants at the 2016 Annual Meeting of the Program of Growth and Institutions at Tsinghua University, 2017 Midwest Macro Conference, 2017 European Economics Association Annual Meeting, 2019 Annual Conference on Macroeconomics Across Time and Space at the Federal Reserve of Philadelphia, 2019 Cowles Macroeconomics Conference at Yale University, 2019 AFBER Annual Conference (sessions on Asian Economic Transformation) at Singapore, 2019 QMUL CEPR Conference, Arizona State University, Brown University, Central University of Finance and Economics, Copenhagen Business School, Danmarks Nationalbank, East China Normal University, Emory University, Federal Reserve Bank of Minneapolis, Federal Reserve Bank of Philadelphia, Fudan University, IIES Stockholm University, Interamerican Development Bank, Paris School of Economics, Peking University, Shanghai Jiao Tong University, Shanghai University of Finance and Economics, University of California at Berkeley, University of California at San Diego, University of Oslo, University of Pennsylvania, University of Vienna, and Yale University. We are especially indebted to Chaoran Chen and Andrew Glover who acted as discussants of the paper.

+ the filename suggests this is R&R (1st revision) @ the EJ
The history of the paper

+ the filename suggests this is R&R (1st revision) @ the EJ
Summary II: Features

The ingredients:

1. Strong empirical section
2. Continuous time model:
 ▶ Nice closed form expressions
 ▶ Estimation
3. Discrete time model for quantitative exercises
4. International evidence as a robustness exercise
The ingredients:

1. Strong empirical section ✓
2. Continuous time model:
 ▶ Nice closed form expressions
 ▶ Estimation
3. Discrete time model for quantitative exercises
4. International evidence as a robustness exercise
Summary II: Features

The ingredients:

1. Strong empirical section ✓
2. Continuous time model: ✓
 - Nice closed form expressions
 - Estimation
3. Discrete time model for quantitative exercises
4. International evidence as a robustness exercise
Summary II: Features

The ingredients:

1. Strong empirical section ✓
2. Continuous time model: ✓
 - Nice closed form expressions ✓
 - Estimation
3. Discrete time model for quantitative exercises
4. International evidence as a robustness exercise
Summary II: Features

The ingredients:

1. Strong empirical section ✓
2. Continuous time model: ✓
 • Nice closed form expressions ✓
 • Estimation ++
3. Discrete time model for quantitative exercises
4. International evidence as a robustness exercise
Summary II: Features

The ingredients:

1. Strong empirical section ✓
2. Continuous time model: ✓
 - Nice closed form expressions ✓
 - Estimation ++
3. Discrete time model for quantitative exercises ✓
4. International evidence as a robustness exercise
Summary II: Features

The ingredients:

1. Strong empirical section ✓
2. Continuous time model: ✓
 - Nice closed form expressions ✓
 - Estimation ++
3. Discrete time model for quantitative exercises ✓
4. International evidence as a robustness exercise +
Summary II: Features

The ingredients:

1. Strong empirical section ✓
2. Continuous time model: ✓
 - Nice closed form expressions ✓
 - Estimation ++
3. Discrete time model for quantitative exercises ✓
4. International evidence as a robustness exercise +

- Convincing mechanism, but validation difficult
Summary II: Features

The ingredients:

1. Strong empirical section ✓
2. Continuous time model: ✓
 - Nice closed form expressions ✓
 - Estimation ++
3. Discrete time model for quantitative exercises ✓
4. International evidence as a robustness exercise +

- Convincing mechanism, but validation difficult
Estimation I.

What you do:
- Method of simulated moments
- Using the deterministic model
- Targeting ratios in the data at given points in time (i.e. indirect inference)
- 13 parameters for 16 ratios

Potential problems with MSM/IF:
- Are parameters identified by the given ratios?
- Deterministic model \rightarrow no asymptotics \rightarrow no standard deviations
- Are estimates independent of initial values?

Somewhat easy fix: approximate Bayesian computation (ABC)

But: Do we actually need an estimation exercise here?
Estimation I.

- **What you do:**
 - Method of simulated moments
 - Using the *deterministic* model
 - Targeting ratios in the data at given points in time (i.e. indirect inference)
 - 13 parameters for 16 ratios

- **Potential problems with MSM/IF:**
 - Are parameters identified by the given ratios?
 - Deterministic model → no asymptotics → no standard deviations
 - Are estimates independent of initial values?
 - Somewhat easy fix: approximate Bayesian computation (ABC)
 - **But:** Do we actually need an estimation exercise here?
Estimation I.

- **What you do:**
 - Method of simulated moments
 - Using the *deterministic* model
 - Targeting ratios in the data at given points in time (i.e. indirect inference)
 - 13 parameters for 16 ratios

- **Potential problems with MSM/IF:**
 - Are parameters identified by the given ratios?
 - Deterministic model \rightarrow no asymptotics \rightarrow no standard deviations
 - Are estimates independent of initial values?
 - Somewhat easy fix: approximate Bayesian computation (ABC)
 - **But:** Do we actually need an estimation exercise here?
Estimation I.

- What you do:
 - Method of simulated moments
 - Using the *deterministic* model
 - Targeting ratios in the data at given points in time (i.e. indirect inference)
 - 13 parameters for 16 ratios

- Potential problems with MSM/IF:
 - Are parameters identified by the given ratios?
 - Deterministic model → no asymptotics → no standard deviations
 - Are estimates independent of initial values?

Somewhat easy fix: approximate Bayesian computation (ABC)

But: Do we actually need an estimation exercise here?
Estimation I.

- **What you do:**
 - Method of simulated moments
 - Using the *deterministic* model
 - Targeting ratios in the data at given points in time (i.e. indirect inference)
 - 13 parameters for 16 ratios

- **Potential problems with MSM/IF:**
 - Are parameters identified by the given ratios?
 - Deterministic model \rightarrow no asymptotics \rightarrow no standard deviations
 - Are estimates independent of initial values?

- Somewhat easy fix: approximate Bayesian computation (ABC)

- **But:** Do we actually need an estimation exercise here?
What you do:
- Method of simulated moments
- Using the deterministic model
- Targeting ratios in the data at given points in time (i.e. indirect inference)
- 13 parameters for 16 ratios

Potential problems with MSM/IF:
- Are parameters identified by the given ratios?
- Deterministic model → no asymptotics → no standard deviations
- Are estimates independent of initial values?

Somewhat easy fix: approximate Bayesian computation (ABC)

But: Do we actually need an estimation exercise here?
Estimation II.: Bayesian way

What you could do:

- **Problem:** no balanced growth path, model essentially nonlinear
- Take discrete time transition function \(x_t = f(x_{t-1}, \epsilon_t; \theta) \)
- Observation function \(z_t = g(z_t) + \nu_t \)
- State \(x_t \), shocks \(\epsilon_t \), measurement errors \(\nu_t \), parameters \(\theta \)
- Use particle filter to get \(\mathcal{L}(\theta) = Prob \left(\{ z_t \}_0^T | \theta \right) \)
- Assign priors \(p(\theta) \)
- Estimate \(\theta \) by sampling from posterior \(p (\theta | \{ z_t \}_0^T) \)
- Estimate \(\tilde{\theta} \subset \theta \) which nests model of Herrendorf. Do Bayesian model comparison
Estimation II.: Bayesian way

What you could do:

- **Problem:** no balanced growth path, model essentially nonlinear
- Take discrete time transition function \(x_t = f(x_{t-1}, \epsilon_t; \theta) \)
- Observation function \(z_t = g(z_t) + \nu_t \)
- State \(x_t \), shocks \(\epsilon_t \), measurement errors \(\nu_t \), parameters \(\theta \)
- Use particle filter to get \(\mathcal{L}(\theta) = \text{Prob} \left(\{z_t\}_0^T | \theta \right) \)
- Assign priors \(p(\theta) \)
- Estimate \(\theta \) by sampling from posterior \(p (\theta | \{z_t\}_0^T) \)
- Estimate \(\tilde{\theta} \subset \theta \) which nests model of Herrendorf. Do Bayesian model comparison
Estimation II.: Bayesian way

What you could do:

- **Problem:** no balanced growth path, model essentially nonlinear
- Take discrete time transition function \(x_t = f(x_{t-1}, \epsilon_t; \theta) \)
- Observation function \(z_t = g(z_t) + \nu_t \)
- State \(x_t \), shocks \(\epsilon_t \), measurement errors \(\nu_t \), parameters \(\theta \),
- Use particle filter to get \(\mathcal{L}(\theta) = Prob \left(\{ z_t \}_0^T | \theta \right) \)
- Assign priors \(p(\theta) \)
- Estimate \(\theta \) by sampling from posterior \(p(\theta | \{ z_t \}_0^T) \)
- Estimate \(\tilde{\theta} \subset \theta \) which nests model of Herrendorf. Do Bayesian model comparison
Estimation II.: Bayesian way

What you could do:

- **Problem:** no balanced growth path, model essentially nonlinear
- Take discrete time transition function $x_t = f(x_{t-1}, \epsilon_t; \theta)$
- Observation function $z_t = g(z_t) + \nu_t$
- State x_t, shocks ϵ_t, measurement errors ν_t, parameters θ,
- Use particle filter to get $L(\theta) = \text{Prob} \left(\{z_t\}_0^T \mid \theta \right)$
- Assign priors $p(\theta)$
- Estimate $\hat{\theta}$ by sampling from posterior $p \left(\theta \mid \{z_t\}_0^T \right)$
- Estimate $\tilde{\theta} \subset \theta$ which nests model of Herrendorf. Do Bayesian model comparison
Recommendation

...
Recommendation

Publish as is.
Thank you for your attention!