The Long-Run Phillips Curve is... a Curve

Guido Ascari Paolo Bonomolo Qazi Haque

De Nederlandsche Bank and University of Pavia De Nederlandsche Bank University of Adelaide and CAMA

54th Konstanz Seminar on Monetary Theory and Policy

23 - 25 May 2023

Views expressed are those of the authors and do not necessarily reflect official positions of De Nederlandsche Bank
The question

An old debate: is there any trade-off between inflation and output/unemployment in the long run?

- Phelps (1967), Friedman (1968): Natural rate hypothesis
The question

An old debate: is there any trade-off between inflation and output/unemployment in the long run?

► Phelps (1967), Friedman (1968): Natural rate hypothesis

► “There is always a temporary trade-off between inflation and unemployment; there is no permanent trade-off.”
 - Friedman (1968, p. 11)

⇒ the long-run Phillips curve is vertical
An old debate: is there any trade-off between inflation and output/unemployment in the long run?

- Phelps (1967), Friedman (1968): Natural rate hypothesis

 “There is always a temporary trade-off between inflation and unemployment; there is no permanent trade-off.”
 - Friedman (1968, p. 11)

 ⇒ the long-run Phillips curve is vertical

- Cornerstone role in macroeconomic theory
The question

An old debate: is there any trade-off between inflation and output/unemployment in the long run?

- Phelps (1967), Friedman (1968): Natural rate hypothesis

- “There is always a temporary trade-off between inflation and unemployment; there is no permanent trade-off.”
 - Friedman (1968, p. 11)

⇒ the long-run Phillips curve is vertical

- Cornerstone role in macroeconomic theory

- ...and practice: working assumption of central banks in the implementation of monetary policy

⇒ “Inflation is a monetary phenomenon”
The question

It is somewhat surprising to note that:

- **Empirically**: There is little econometric work devoted to test the absence of a long-run trade-off.

 Related literature: King and Watson (1994, 1997); Svensson (2015); Beyer and Farmer (2007); Berentsen et al. (2011); Haug and King (2014); Benati (2015)
The question

It is somewhat surprising to note that:

▶ **Empirically**: There is little econometric work devoted to test the absence of a long-run trade-off.

Related literature: King and Watson (1994, 1997); Svensson (2015); Beyer and Farmer (2007); Berentsen et al. (2011); Haug and King (2014); Benati (2015)

▶ **Theoretically**: Many models imply non-vertical LRPC

⇒ “Non-superneutrality”
It is somewhat surprising to note that:

▶ **Empirically**: There is little econometric work devoted to test the absence of a long-run trade-off.

Related literature: King and Watson (1994, 1997); Svensson (2015); Beyer and Farmer (2007); Berentsen et al. (2011); Haug and King (2014); Benati (2015)

▶ **Theoretically**: Many models imply non-vertical LRPC

⇒ “Non-superneutrality”

▶ For example, modern macroeconomic sticky price frameworks generally do not imply the absence of a long-run relation. The Generalized NK model delivers a negative relationship between steady state inflation and output. E.g., Ascari (2004), Ascari and Sbordone (2014)
What we do

1. **Main research question:**
 What is the long-run relation between inflation and output in the data?
What we do

1. **Main research question:**

 What is the long-run relation between inflation and output in the data?
What we do

1. Main research question:
 What is the long-run relation between inflation and output in the data?

 Time series model
What we do

1. Main research question:
 What is the long-run relation between inflation and output in the data?

 Time series model
 - Trend-cycle decomposition using a BVAR:
What we do

1. **Main research question:**

 What is the long-run relation between inflation and output in the data?

 Time series model

 ▶ Trend-cycle decomposition using a BVAR:

 ▶ time-varying stochastic trends
What we do

1. **Main research question:**
 What is the long-run relation between inflation and output in the data?

Time series model
 ▶ Trend-cycle decomposition using a BVAR:
 ▶ time-varying stochastic trends
 ▶ cyclical component featuring stochastic volatility
What we do

1. Main research question:
 What is the long-run relation between inflation and output in the data?

Time series model

- Trend-cycle decomposition using a BVAR:
 - time-varying stochastic trends
 - cyclical component featuring stochastic volatility
 - non-linear LRPC in the form of piecewise linear model
What we do

1. **Main research question:**
 What is the long-run relation between inflation and output in the data?

 Time series model
 - Trend-cycle decomposition using a BVAR:
 - time-varying stochastic trends
 - cyclical component featuring stochastic volatility
 - non-linear LRPC in the form of piecewise linear model

2. **Next question:** *Can we use a structural model to interpret the (whatever) findings?*
What we do

1. **Main research question:**
 What is the long-run relation between inflation and output in the data?

 Time series model
 - Trend-cycle decomposition using a BVAR:
 - time-varying stochastic trends
 - cyclical component featuring stochastic volatility
 - non-linear LRPC in the form of piecewise linear model

2. **Next question:** Can we use a structural model to interpret the (whatever) findings?
1. **Main research question:**
 What is the long-run relation between inflation and output in the data?

 Time series model
 - Trend-cycle decomposition using a BVAR:
 - time-varying stochastic trends
 - cyclical component featuring stochastic volatility
 - non-linear LRPC in the form of piecewise linear model

2. **Next question:** Can we use a structural model to interpret the (whatever) findings?

 Search for a structural model / interpretation
Preview of our findings

What is the long-run relation between inflation and output?

1. Time series model
Preview of our findings

What is the long-run relation between inflation and output?

1. Time series model
 - The LRPC is not vertical, it is negatively sloped (higher inflation is related to lower output in the LR)

 - When trend inflation $\leq 4\%$ the LRPC is vertical
 - When trend inflation $\geq 4\%$ the LRPC is negatively sloped: every percentage point increase in trend inflation is related to about 1% decrease in potential output per year

2. Structural model
 - Not very far: GNK model (Ascari 2004; Ascari and Sbordone, 2014): higher trend inflation causes lower output in the LR
 - The model has the two key features from the statistical analysis: non-linear and negatively sloped LRPC
 - The estimated LRPC from the structural model turns out to be quantitatively very similar (in a statistical sense) to the one from the time series analysis
Preview of our findings

What is the long-run relation between inflation and output?

1. **Time series model**
 - The LRPC is not vertical, it is negatively sloped (higher inflation is related to lower output in the LR)
 - The key to get this result: model the LRPC as non-linear relation

2. **Structural model**
 - Not very far: GNK model (Ascari 2004; Ascari and Sbordone, 2014): higher trend inflation causes lower output in the LR
 - The model has the two key features from the statistical analysis: non-linear and negatively sloped LRPC
 - The estimated LRPC from the structural model turns out to be quantitatively very similar (in a statistical sense) to the one from the time series analysis
Preview of our findings

What is the long-run relation between inflation and output?

1. Time series model
 - The LRPC is not vertical, it is negatively sloped (higher inflation is related to lower output in the LR)
 - The key to get this result: model the LRPC as non-linear relation
 - when trend inflation $\lesssim 4\%$ the LRPC is vertical

2. Structural model
 - not very far: GNK model (Ascari 2004; Ascari and Sbordone, 2014): higher trend inflation causes lower output in the LR
 - The model has the two key features from the statistical analysis: non-linear and negatively sloped LRPC
 - The estimated LRPC from the structural model turns out to be quantitatively very similar (in a statistical sense) to the one from the time series analysis
Preview of our findings

What is the long-run relation between inflation and output?

1. Time series model
 ▶ The LRPC is not vertical, it is negatively sloped (higher inflation is related to lower output in the LR)
 ▶ The key to get this result: model the LRPC as non-linear relation
 ▶ when trend inflation $\lesssim 4\%$ the LRPC is vertical
 ▶ when trend inflation $\gtrsim 4\%$ the LRPC is negatively sloped: every percentage point increase in trend inflation is related to about 1% decrease in potential output per year

2. Structural model
 ▶ not very far: GNK model (Ascari 2004; Ascari and Sbordone, 2014): higher trend inflation causes lower output in the LR
 ▶ The model has the two key features from the statistical analysis: non-linear and negatively sloped LRPC
 ▶ The estimated LRPC from the structural model turns out to be quantitatively very similar (in a statistical sense) to the one from the time series analysis
Preview of our findings

What is the long-run relation between inflation and output?

1. Time series model
 - The LRPC is not vertical, it is negatively sloped (higher inflation is related to lower output in the LR)
 - The key to get this result: model the LRPC as non-linear relation
 - when trend inflation \(\lesssim 4\% \) the LRPC is vertical
 - when trend inflation \(\gtrsim 4\% \) the LRPC is negatively sloped: every percentage point increase in trend inflation is related to about 1% decrease in potential output per year

2. Structural model
Preview of our findings

What is the long-run relation between inflation and output?

1. Time series model
 - The LRPC is not vertical, it is negatively sloped (higher inflation is related to lower output in the LR)
 - The key to get this result: model the LRPC as non-linear relation
 - when trend inflation \(\lesssim 4\% \) the LRPC is vertical
 - when trend inflation \(\gtrsim 4\% \) the LRPC is negatively sloped: every percentage point increase in trend inflation is related to about 1% decrease in potential output per year

2. Structural model
 - not very far: GNK model (Ascari 2004; Ascari and Sbordone, 2014): higher trend inflation causes lower output in the LR
Preview of our findings

What is the long-run relation between inflation and output?

1. **Time series model**
 - The LRPC is not vertical, it is negatively sloped (higher inflation is related to lower output in the LR)
 - The key to get this result: model the LRPC as non-linear relation
 - when trend inflation \(\approx 4\% \) the LRPC is vertical
 - when trend inflation \(\approx 4\% \) the LRPC is negatively sloped: every percentage point increase in trend inflation is related to about 1% decrease in potential output per year

2. **Structural model**
 - not very far: GNK model (Ascari 2004; Ascari and Sbordone, 2014): higher trend inflation causes lower output in the LR
 - The model has the two key features from the statistical analysis: non-linear and negatively sloped LRPC
Preview of our findings

What is the long-run relation between inflation and output?

1. Time series model
 - The LRPC is not vertical, it is negatively sloped (higher inflation is related to lower output in the LR)
 - The key to get this result: model the LRPC as non-linear
 - when trend inflation \(\lesssim 4\%\) the LRPC is vertical
 - when trend inflation \(\gtrsim 4\%\) the LRPC is negatively sloped: every percentage point increase in trend inflation is related to about 1% decrease in potential output per year

2. Structural model
 - not very far: GNK model (Ascari 2004; Ascari and Sbordone, 2014): higher trend inflation causes lower output in the LR
 - The model has the two key features from the statistical analysis: non-linear and negatively sloped LRPC
 - The estimated LRPC from the structural model turns out to be quantitatively very similar (in a statistical sense) to the one from the time series analysis
A time-series model

Three observables: GDP per capita, inflation and interest rate
A time-series model

Three observables: GDP per capita, inflation and interest rate

Trend-cycle decomposition (Generalization of Steady State VAR, Villani, 2009; Johannes and Mertens, 2021):

\[X_t = \bar{X}_t + \hat{X}_t \]
A time-series model

Three observables: GDP per capita, inflation and interest rate

Trend-cycle decomposition (Generalization of Steady State VAR, Villani, 2009; Johannes and Mertens, 2021):

$$X_t = \bar{X}_t + \hat{X}_t$$

- X_t is a $(n \times 1)$ vector with observed variables at time t
- \bar{X}_t is the vector with the long-run values of X_t
- \hat{X}_t is the deviation of X_t from \bar{X}_t
A time-series model

Three observables: GDP per capita, inflation and interest rate

Trend-cycle decomposition (Generalization of Steady State VAR, Villani, 2009; Johannes and Mertens, 2021):

\[X_t = \bar{X}_t + \hat{X}_t \]

- \(X_t \) is a \((n \times 1)\) vector with observed variables at time
- \(\bar{X}_t \) is the vector with the long-run values of \(X_t \)
- \(\hat{X}_t \) is the deviation of \(X_t \) from \(\bar{X}_t \)

Cyclical component:

\(\hat{X}_t \) described by an unrestricted VAR as in (1): stable component with unconditional expectation equal to zero

\[
A(L) (X_t - \bar{X}_t) = \varepsilon_t \quad \varepsilon_t \sim N(0, \Sigma_{\varepsilon,t})
\] (1)
The model for the long-run

\[\tilde{y}_t = y_t^* + \delta(\tilde{\pi}_t) \]
the trend output as a function of trend inflation

\[\delta(\tilde{\pi}_t): \delta(0) = 0 \]

\[y_t^* = y_{t-1}^* + g_t + \eta_t^y \]

\[g_t = g_{t-1} + \eta_t^g \]

\[\tilde{\pi}_t = \tilde{\pi}_{t-1} + \eta_t^\pi \]
trend inflation is random walk

\[\tilde{i}_t - \tilde{\pi}_t = cg_t + z_t \]
long-run Fisher equation

\[z_t = z_{t-1} + \eta_t^z \]
A non-linear long-run Phillips curve

Our choice of \(\delta(\bar{\pi}_t) \) is a piecewise linear function:

\[
\bar{y}_t = y_t^* + \delta(\bar{\pi}_t)
\]

\[
\delta(\bar{\pi}_t) = \begin{cases}
 k_1 \bar{\pi}_t & \text{if } \bar{\pi}_t \leq \tau \\
 k_2 \bar{\pi}_t + c_k & \text{if } \bar{\pi}_t > \tau
\end{cases}
\]

- It can approximate potential non-linearity without imposing strong assumptions on the functional form
- It is easy to interpret
- It is simpler to treat: methodological contribution
A piecewise linear approach

The model can be written as:

\[
\bar{X}_t = D(\theta_t) + H(\theta_t) \theta_t \\
\theta_t = M(\theta_t) + G(\theta_t) \theta_{t-1} + P(\theta_t) \eta_t
\]

where, in particular

\[
(D, H, M, G, P) = \begin{cases}
(D_1, H_1, M_1, G_1, P_1) & \text{if } \bar{\pi}_t \leq \tau \\
(D_2, H_2, M_2, G_2, P_2) & \text{if } \bar{\pi}_t > \tau
\end{cases}
\]

- Methodological contribution: we characterize the likelihood and the posterior distribution of \(\theta_t = (\bar{y}_t, \bar{\pi}_t, g_t, z_t) \) analytically

- Compromise between efficiency and misspecification
Black: no misspecification - likelihood and posterior not available analytically
Red: misspecification - likelihood and posterior available analytically
Green: less misspecification - likelihood and posterior available analytically
Estimation

Bayesian approach, US data, sample from 1960Q1 to 2008Q2

Two sources of non linearity: stochastic volatility and a piecewise linear LRPC \(\Rightarrow \) Particle filtering approach

1. **Latent processes**: “Rao-Blackwellization”, thanks to the analytical results on the piecewise linear model \(\Rightarrow \) we can analytically characterize the likelihood function and posterior distribution of the latent states

2. **Parameters**: Particle filtering allows to jointly approximate the latent states and the posterior distribution of the parameters
 - Particle learning by Carvalho et al. (2010); see also Mertens and Nason (2020)
 - Mixture of Normal distributions as approximation of the posterior of \(\tau \) (Liu and West, 2001)
Parameter estimates - prior and posterior distributions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Density</th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>Model L</th>
<th>Model PWL</th>
</tr>
</thead>
<tbody>
<tr>
<td>k_1</td>
<td>Normal</td>
<td>0.0</td>
<td>0.6</td>
<td>-0.15</td>
<td>-0.07</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[-0.49 0.19]</td>
<td>[-0.51 0.38]</td>
</tr>
<tr>
<td>k_2</td>
<td>Normal</td>
<td>0.0</td>
<td>0.6</td>
<td>-0.92</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[-1.35 -0.47]</td>
<td></td>
</tr>
<tr>
<td>τ</td>
<td>Normal</td>
<td>4.0</td>
<td>0.3</td>
<td>4.09</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[3.88 4.29]</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>Normal</td>
<td>4.0</td>
<td>0.75</td>
<td>3.53</td>
<td>2.93</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[3.28 3.78]</td>
<td>[2.68 3.18]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Density</th>
<th>Mean</th>
<th>Degrees of freedom</th>
<th>Model L</th>
<th>Model PWL</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ^2_π</td>
<td>Inverse Gamma</td>
<td>0.25²</td>
<td>15</td>
<td>0.2²</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[0.18² 0.23²]</td>
<td>[0.21² 0.26²]</td>
</tr>
<tr>
<td>σ^2_γ</td>
<td>Inverse Gamma</td>
<td>0.5²</td>
<td>15</td>
<td>0.49²</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[0.45² 0.54²]</td>
<td>[0.54² 0.66²]</td>
</tr>
<tr>
<td>σ^2_g</td>
<td>Inverse Gamma</td>
<td>0.05²</td>
<td>15</td>
<td>0.043²</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[0.039² 0.048²]</td>
<td>[0.042² 0.058²]</td>
</tr>
<tr>
<td>σ^2_z</td>
<td>Inverse Gamma</td>
<td>0.15²</td>
<td>15</td>
<td>0.14²</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[0.13² 0.16²]</td>
<td>[0.14² 0.19²]</td>
</tr>
</tbody>
</table>

Posterior median and the 90% probability interval in brackets
Estimation results - Linear model

A vertical (or flat) long-run Phillips curve

Figure: Posterior distributions of the slope of the LRPC - Linear model.
Estimation results - Linear model

Figure: Inference of the slope k_1 - Linear model.
Estimation results - Piecewise linear model

Non linear and negatively sloped long-run Phillips curve

Figure: Posterior distributions of the slopes of the LRPC - Piecewise linear model.
Estimation results - Piecewise linear model

Figure: Inference of the slopes k_1 and k_2 - Piecewise linear model.
Long-run Phillips curve - Piecewise linear model

Figure: LRPC - Piecewise linear model. Median and 90% probability interval.
Trend inflation estimate - Piecewise linear model

Figure: Inflation and trend inflation - Piecewise linear model.
The cost of trend inflation: the long-run output gap

Figure: Long-run output gap estimated through the piecewise linear model.
The structural model

- A variant of Ascari and Ropele (2009) GNK model:
 - (external) habit formation in consumption
 - Generalized NKPC with trend inflation (no indexation)
 - Taylor-type monetary policy rule

- Time varying stochastic trend inflation \implies methodological contribution, estimate a DSGE model with time-varying steady state

- Four structural shocks: discount factor, technology, monetary policy and trend inflation (allow for stochastic volatility)

- LRPC is:
 - Non-linear
 - Negatively sloped
The costs of trend inflation

- Higher trend inflation increases the average markup thus reducing aggregate output

- Price stickiness \Rightarrow price dispersion, dispersion in the demand for goods and therefore inefficiency in the quantity produced

\[
N_t = \int_0^1 N_{i,t} \, di = \int_0^1 \left(\frac{Y_{i,t}}{A_t} \right)^{\frac{1}{1-\alpha}} \, di = \int_0^1 \left(\frac{P_{i,t}}{P_t} \right)^{-\varepsilon} \left(\frac{Y_t}{A_t} \right)^{\frac{1}{1-\alpha}} \, di
\]

Aggregate output is:

\[
Y_t = \frac{A_t}{s_t^{1-\alpha}} N_t^{1-\alpha}
\]

with long-run price dispersion: $\bar{s}_t = g(\bar{\pi}_t)$

- Higher trend inflation leads to higher average markup and price dispersion and therefore increases output inefficiency
Estimation

The parameters of the model depend on trend inflation:

\[\Gamma_0(\pi_t)\hat{Z}_t = \Gamma_1(\pi_t)\hat{Z}_{t-1} + \Psi(\pi_t)\varepsilon_t + \Pi(\pi_t)\eta_t, \]

(5)

So the state space has time varying coefficients:

\[y_t = c_1 + F\hat{Z}_t \]
\[\hat{Z}_t = c_{2,t} + M_{z,t}\hat{Z}_{t-1} + M_{\varepsilon,t}\varepsilon_t \quad \varepsilon_t \sim N(0, \Sigma_{\varepsilon,t}) \]

(6)

▶ Two sources of non linearity: stochastic volatility and time-varying trend inflation

▶ We use the same particle filtering strategy as before
Trend inflation estimate - GNK model

Figure: Inflation and trend inflation - GNK model.
Stochastic volatility estimates

Figure: Stochastic volatility of the structural shocks
Comparing long-run Phillips curve: VAR and GNK

Figure: LRPC: median (continuous line) and 90% probability interval (dashed lines) - comparison between VAR (blue) and GNK (black)
Comparing long-run output gap: VAR and GNK

Figure: Comparison between long-run output gap estimates: VAR (blue) and GNK (black).
Conclusions

What is the long-run relation between inflation and output?

1. Time series model
Conclusions

What is the long-run relation between inflation and output?

1. Time series model
 - The LRPC is not vertical, it is negatively sloped (higher inflation is related to lower output in the LR)

2. Structural model
 - We interpret these findings through the lens of a GNK model (Ascari 2004; Ascari and Sbordone, 2014): higher trend inflation causes lower output in the LR
 - The model has the two key features from the statistical analysis: non-linear and negatively sloped LRPC
 - The estimate from this structural model yields costs implied by the LRPC statistically consistent with the time series model
Conclusions

What is the long-run relation between inflation and output?

1. Time series model
 - The LRPC is not vertical, it is negatively sloped (higher inflation is related to lower output in the LR)
 - The key to get this result: model the LRPC as non-linear relation
Conclusions

What is the long-run relation between inflation and output?

1. Time series model
 - The LRPC is not vertical, it is negatively sloped (higher inflation is related to lower output in the LR)
 - The key to get this result: model the LRPC as non-linear relation
 - when trend inflation $\lesssim 4\%$ the LRPC is vertical

2. Structural model
 - We interpret these findings through the lens of a GNK model (Ascari 2004; Ascari and Sbordone, 2014): higher trend inflation causes lower output in the LR
 - The model has the two key features from the statistical analysis: non-linear and negatively sloped LRPC
 - The estimate from this structural model yields costs implied by the LRPC statistically consistent with the time series model
Conclusions

What is the long-run relation between inflation and output?

1. Time series model
 - The LRPC is not vertical, it is negatively sloped (higher inflation is related to lower output in the LR)
 - The key to get this result: model the LRPC as non-linear relation
 - when trend inflation $\lesssim 4\%$ the LRPC is vertical
 - when trend inflation $\gtrsim 4\%$ the LRPC is negatively sloped: every percentage point increase in trend inflation is related to about 1% decrease in potential output per year

2. Structural model
 - We interpret these findings through the lens of a GNK model (Ascari 2004; Ascari and Sbordone, 2014): higher trend inflation causes lower output in the LR
 - The model has the two key features from the statistical analysis: non-linear and negatively sloped LRPC
 - The estimate from this structural model yields costs implied by the LRPC statistically consistent with the time series model
Conclusions

What is the long-run relation between inflation and output?

1. Time series model
 - The LRPC is not vertical, it is negatively sloped (higher inflation is related to lower output in the LR)
 - The key to get this result: model the LRPC as non-linear relation
 - when trend inflation $\lesssim 4\%$ the LRPC is vertical
 - when trend inflation $\gtrsim 4\%$ the LRPC is negatively sloped: every percentage point increase in trend inflation is related to about 1% decrease in potential output per year

2. Structural model
Conclusions

What is the long-run relation between inflation and output?

1. Time series model
 ▶ The LRPC is not vertical, it is negatively sloped (higher inflation is related to lower output in the LR)
 ▶ The key to get this result: model the LRPC as non-linear relation
 ▶ when trend inflation $\leq 4\%$ the LRPC is vertical
 ▶ when trend inflation $\geq 4\%$ the LRPC is negatively sloped: every percentage point increase in trend inflation is related to about 1% decrease in potential output per year

2. Structural model
 ▶ We interpret these findings through the lens of a GNK model (Ascari 2004; Ascari and Sbordone, 2014): higher trend inflation causes lower output in the LR
Conclusions

What is the long-run relation between inflation and output?

1. Time series model
 ▶ The LRPC is not vertical, it is negatively sloped (higher inflation is related to lower output in the LR)
 ▶ The key to get this result: model the LRPC as non-linear relation
 ▶ when trend inflation $\lesssim 4\%$ the LRPC is vertical
 ▶ when trend inflation $\gtrsim 4\%$ the LRPC is negatively sloped: every percentage point increase in trend inflation is related to about 1% decrease in potential output per year

2. Structural model
 ▶ We interpret these findings through the lens of a GNK model (Ascari 2004; Ascari and Sbordone, 2014): higher trend inflation causes lower output in the LR
 ▶ The model has the two key features from the statistical analysis: non-linear and negatively sloped LRPC
Conclusions

What is the long-run relation between inflation and output?

1. Time series model
 - The LRPC is not vertical, it is negatively sloped (higher inflation is related to lower output in the LR)
 - The key to get this result: model the LRPC as non-linear relation
 - when trend inflation $\lessapprox 4\%$ the LRPC is vertical
 - when trend inflation $\gtrapprox 4\%$ the LRPC is negatively sloped: every percentage point increase in trend inflation is related to about 1% decrease in potential output per year

2. Structural model
 - We interpret these findings through the lens of a GNK model (Ascari 2004; Ascari and Sbordone, 2014): higher trend inflation causes lower output in the LR
 - The model has the two key features from the statistical analysis: non-linear and negatively sloped LRPC
 - The estimate from this structural model yields costs implied by the LRPC statistically consistent with the time series model
EXTRA
Econometric strategy

We use a particle filtering strategy to approximate the joint posterior distribution of latent processes and parameters:

Latent processes: a “conditional piecewise linear model”

\[
p (\theta_t, \log s_t | \theta_{t-1}, \log s_{t-1}, X_{1:t}) = p (\theta_t | \log s_t, \theta_{t-1}, \log s_{t-1}, X_{1:t}) \quad \text{"Full conditional posterior"}
\]

\[
p (\log s_t | \theta_{t-1}, \log s_{t-1}, Y_{1:t}) \quad \text{"blind proposal"}
\]

Parameters:

- Particle learning by Carvalho Johannes Lopes and Polson (2010); see also Mertens and Nason (2020)
- Mixture of Normal distributions as approximation of the posterior of \(\tau\) (Liu and West, 2001)

Fully adapted particle filter

At $t - 1$: $\left\{ \theta_{t-1}^{(i)} \right\}_{i=1}^{N}$ with corresponding weights $\left\{ w_{t-1}^{(i)} \right\}_{i=1}^{N}$ approximate $p(\theta_{t-1} \mid X_{1:t-1})$

(1) RESAMPLE

(a) Compute $\tilde{w}_{t}^{(i)} \propto p \left(X_{t} \mid \theta_{t-1}^{(i)}, X_{1:t-1} \right)$

(b) Resample $\left\{ \theta_{t-1}^{(i)} \right\}_{i=1}^{N}$ using $\left\{ \tilde{w}_{t}^{(i)} \right\}_{i=1}^{N}$ and get $\left\{ \tilde{\theta}_{t-1}^{(i)} \right\}_{i=1}^{N}$

(2) PROPAGATE

Draw $\theta_{t}^{(i)} \sim p \left(\theta_{t} \mid \tilde{\theta}_{t-1}^{(i)}, X_{1:t} \right)$

- $p \left(X_{t} \mid \theta_{t-1}^{(i)}, X_{1:t-1} \right)$ is a weighted sum of Unified Skew Normal distributions (Arellano-Valle and Azzalini, 2006)
- $p \left(\theta_{t} \mid \tilde{\theta}_{t-1}^{(i)}, X_{1:t-1} \right)$ is a weighted sum of multivariate truncated Normal distributions
Partially adapted particle filter

At $t - 1$: \(\{ \theta^{(i)}_{t-1}, \log s^{(i)}_{t-1} \}_{i=1}^{N} \) with corresponding weights \(\{ w^{(i)}_{t-1} \}_{i=1}^{N} \) approximate \(p(\theta_{t-1}, \log s_{t-1}|X_{1:t-1}) \)

(1) RESAMPLE

(a) Compute \(\tilde{w}^{(i)}_{t} \propto w^{(i)}_{t-1} p(X_{t}|\theta^{(i)}_{t-1}, g(\log s^{(i)}_{t-1}), X_{1:t-1}) \)

(b) Resample \(\{ \theta^{(i)}_{t-1}, \log s^{(i)}_{t-1} \}_{i=1}^{N} \) using \(\{ \tilde{w}^{(i)}_{t} \}_{i=1}^{N} \)

Let the new particles be \(\{ \tilde{\theta}^{(i)}_{t-1}, \log \tilde{s}^{(i)}_{t-1} \}_{i=1}^{N} \).
Partially adapted particle filter

(2) PROPAGATE
 (a) Draw \(\log s_t^{(i)} \sim N \left(\log \tilde{s}_{t-1}^{(i)}, \Sigma_v \right) \)
 (b) Draw \(\theta_t^{(i)} \sim p \left(\theta_t | \log s_t^{(i)}, \tilde{\theta}_{t-1}^{(i)}, X_{1:t} \right) \)

(3) NEW WEIGHTS
 Compute \(w_t^{(i)} \propto \frac{p \left(X_t | \tilde{\theta}_{t-1}^{(i)}, \log s_t^{(i)}, X_{1:t-1} \right)}{p \left(X_t | \tilde{\theta}_{t-1}^{(i)}, g \left(\log \tilde{s}_{t-1}^{(i)} \right), X_{1:t-1} \right)} \)
Household

The economy is populated by a representative agent with utility

\[E_0 \sum_{t=0}^{\infty} \beta^t d_t \left[\ln (C_t - hC_{t-1}) - d_n \frac{N_t^{1+\varphi}}{1 + \varphi} \right] \]

Budget constraint is given by

\[P_t C_t + R_t^{-1} B_t = W_t N_t + D_t + B_{t-1} \]

d_t \text{ is a discount factor shock which follows an AR(1) process}

\[\ln d_t = \rho_d \ln d_{t-1} + \epsilon_{d,t} \]
Final good firm

Perfectly competitive final good firms combine intermediate inputs

\[Y_t = \left[\int_0^1 Y_{i,t}^{\frac{\varepsilon - 1}{\varepsilon}} \, di \right]^{\frac{\varepsilon}{\varepsilon - 1}} \quad \varepsilon > 1 \]

Price index is a CES aggregate of intermediate input prices

\[P_t = \left[\int_0^1 P_{i,t}^{1-\varepsilon} \, di \right]^{\frac{1}{1-\varepsilon}} \]

The demand schedule for intermediate input

\[Y_{i,t} = \left(\frac{P_{i,t}}{P_t} \right)^{-\varepsilon} Y_t \]
Intermediate good firm

Each firm i produces according to the production function

$$Y_{i,t} = A_t N_{i,t}^{1-\alpha}$$

where A_t denotes the level of technology and its growth rate $g_t \equiv A_t / A_{t-1}$ follows

$$\ln g_t = \ln \bar{g} + \epsilon_{g,t}$$
Price setting

Firms adjust prices P^*_i, t to maximize expected discounted profits with probability $0 < 1 - \theta < 1$

$$E_t \sum_{j=0}^{\infty} \theta^j \beta^j \frac{\lambda_{t+j}}{\lambda_t} \left[\frac{P^*_i, t}{P_{t+j}} Y_{i, t+j} - \frac{W_{t+j}}{P_{t+j}} \left[\frac{Y_{i, t+j}}{A_{t+j}} \right]^{\frac{1}{1-\alpha}} \right]$$

subject to the demand schedule

$$Y_{i, t+j} = \left[\frac{P^*_i, t}{P_{t+j}} \right]^{-\varepsilon} Y_{t+j},$$

where λ_t is the marginal utility of consumption.
The Phillips curve

The first order condition for the optimized relative price \(x_t(= \frac{P_{i,t}^*}{P_t}) \) is given by

\[
(x_t)^{1+\frac{\varepsilon\alpha}{1-\alpha}} = \frac{\varepsilon}{(\varepsilon - 1)(1 - \alpha)} \frac{E_t \sum_{j=0}^{\infty} (\theta \beta)^j \lambda_{t+j} \frac{W_{t+j}}{P_{t+j}} \left[\frac{Y_{t+j}}{A_{t+j}} \right]^{1-\alpha}}{E_t \sum_{j=0}^{\infty} (\theta \beta)^j \lambda_{t+j} \pi_{t|t+j}^{\varepsilon-1} Y_{t+j}} \pi_{t|t+j}^{\frac{\varepsilon}{1-\alpha}}.
\]

where \(\pi_{t|t+j} = \frac{P_{t+1}}{P_t} \times \ldots \times \frac{P_{t+j}}{P_{t+j-1}} \) for \(j \geq 1 \) and \(\pi_{t|t} = \pi_t \).
Aggregate price level evolves according to

\[P_t = \left[\int_0^1 P_{i,t}^{1-\varepsilon} \, di \right]^{\frac{1}{1-\varepsilon}} \Rightarrow \]

\[x_t = \left[\frac{1 - \theta \pi_t^{\varepsilon-1}}{1 - \theta} \right]^{\frac{1}{1-\varepsilon}}. \]

Finally, price dispersion \(s_t \equiv \int_0^1 \left(\frac{P_{i,t}}{P_t} \right)^{-\varepsilon} \, di \) can be written recursively as:

\[s_t = (1 - \theta)x_t^{-\varepsilon} + \theta \pi_t^{\varepsilon} s_{t-1} \]
Monetary policy

\[
\frac{R_t}{R_t} = \left(\frac{R_{t-1}}{R_t} \right)^\rho \left[\left(\frac{\pi_t}{\bar{\pi}_t} \right)^\psi_\pi \left(\frac{Y_t}{Y_t^n} \right)^\psi_x \left(\frac{g_t^y}{g} \right)^\psi_{\Delta y} \right]^{1-\rho} \epsilon_{r,t}
\]

\[
\ln \bar{\pi}_t = \ln \bar{\pi}_{t-1} + \epsilon_{\pi,t}
\]

where \(\bar{\pi}_t \) denotes trend inflation, \(Y_t^n \) is the flex-price output and \(g_t^y \) is growth rate of output.
Parameter estimates - prior and posterior distributions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Prior</th>
<th>Posterior</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Density</td>
<td>Mean</td>
</tr>
<tr>
<td>ψ_π</td>
<td>Gamma</td>
<td>1.5</td>
</tr>
<tr>
<td>ψ_x</td>
<td>Gamma</td>
<td>0.125</td>
</tr>
<tr>
<td>$\psi_{\Delta y}$</td>
<td>Gamma</td>
<td>0.125</td>
</tr>
<tr>
<td>ρ</td>
<td>Beta</td>
<td>0.7</td>
</tr>
<tr>
<td>h</td>
<td>Beta</td>
<td>0.5</td>
</tr>
<tr>
<td>r^*</td>
<td>Gamma</td>
<td>2</td>
</tr>
<tr>
<td>θ</td>
<td>Beta</td>
<td>0.5</td>
</tr>
<tr>
<td>ρ_d</td>
<td>Beta</td>
<td>0.7</td>
</tr>
</tbody>
</table>

Posterior median and 90% credibility interval in brackets.
Implications for short-run output gap

Figure: Comparison between short-run output gap estimates.