The Long-Run Phillips Curve is... a Curve ¹

Guido Ascari Paolo Bonomolo Qazi Haque

De Nederlandsche Bank De Nederlandsche Bank University of Adelaide and University of Pavia and CAMA

54th Konstanz Seminar on Monetary Theory and Policy

23 - 25 May 2023

 $^{^1 {\}rm Views}$ expressed are those of the authors and do not necessarily reflect official positions of De Nederlandsche Bank

An old debate: is there any trade-off between inflation and output/unemployment in the long run?

▶ Phelps (1967), Friedman (1968): Natural rate hypothesis

An old debate: is there any trade-off between inflation and output/unemployment in the long run?

- ▶ Phelps (1967), Friedman (1968): Natural rate hypothesis
- "There is always a temporary trade-off between inflation and unemployment; there is no permanent trade-off."
 Friedman (1968, p. 11)

⇒the long-run Phillips curve is vertical

An old debate: is there any trade-off between inflation and output/unemployment in the long run?

- ▶ Phelps (1967), Friedman (1968): Natural rate hypothesis
- "There is always a temporary trade-off between inflation and unemployment; there is no permanent trade-off."
 Friedman (1968, p. 11)

 \Rightarrow the long-run Phillips curve is vertical

Cornerstone role in macroeconomic theory

An old debate: is there any trade-off between inflation and output/unemployment in the long run?

- ▶ Phelps (1967), Friedman (1968): Natural rate hypothesis
- "There is always a temporary trade-off between inflation and unemployment; there is no permanent trade-off."
 Friedman (1968, p. 11)

⇒the long-run Phillips curve is vertical

- Cornerstone role in macroeconomic theory
- ...and practice: working assumption of central banks in the implementation of monetary policy

 \Rightarrow "Inflation is a monetary phenomenon"

It is somewhat surprising to note that:

Empirically: There is little econometric work devoted to test the absence of a long-run trade-off.

Related literature: King and Watson (1994, 1997); Svensson (2015); Beyer and Farmer (2007); Berentsen et al. (2011); Haug and King (2014); Benati (2015)

It is somewhat surprising to note that:

Empirically: There is little econometric work devoted to test the absence of a long-run trade-off.

Related literature: King and Watson (1994, 1997); Svensson (2015); Beyer and Farmer (2007); Berentsen et al. (2011); Haug and King (2014); Benati (2015)

Theoretically: Many models imply non-vertical LRPC

 \Rightarrow "Non-superneutrality"

It is somewhat surprising to note that:

Empirically: There is little econometric work devoted to test the absence of a long-run trade-off.

Related literature: King and Watson (1994, 1997); Svensson (2015); Beyer and Farmer (2007); Berentsen et al. (2011); Haug and King (2014); Benati (2015)

- Theoretically: Many models imply non-vertical LRPC
 - \Rightarrow "Non-superneutrality"
 - For example, modern macroeconomic sticky price frameworks generally do not imply the absence of a long- run relation. The Generalized NK model delivers a negative relationship between steady state inflation and output. E.g., Ascari (2004), Ascari and Sbordone (2014)

1. Main research question:

1. Main research question:

1. Main research question:

What is the long-run relation between inflation and output in the data?

Time series model

1. Main research question:

What is the long-run relation between inflation and output in the data?

Time series model

Trend-cycle decomposition using a BVAR:

1. Main research question:

- Time series model
 - Trend-cycle decomposition using a BVAR:
 - time-varying stochastic trends

1. Main research question:

- Time series model
 - Trend-cycle decomposition using a BVAR:
 - time-varying stochastic trends
 - cyclical component featuring stochastic volatility

1. Main research question:

- Time series model
 - Trend-cycle decomposition using a BVAR:
 - time-varying stochastic trends
 - cyclical component featuring stochastic volatility
 - non-linear LRPC in the form of piecewise linear model

1. Main research question:

- Time series model
 - Trend-cycle decomposition using a BVAR:
 - time-varying stochastic trends
 - cyclical component featuring stochastic volatility
 - non-linear LRPC in the form of piecewise linear model
- 2. Next question: Can we use a structural model to interpret the (whatever) findings?

1. Main research question:

- Time series model
 - Trend-cycle decomposition using a BVAR:
 - time-varying stochastic trends
 - cyclical component featuring stochastic volatility
 - non-linear LRPC in the form of piecewise linear model
- 2. Next question: Can we use a structural model to interpret the (whatever) findings?

1. Main research question:

What is the long-run relation between inflation and output in the data?

- Time series model
 - Trend-cycle decomposition using a BVAR:
 - time-varying stochastic trends
 - cyclical component featuring stochastic volatility
 - non-linear LRPC in the form of piecewise linear model
- 2. Next question: Can we use a structural model to interpret the (whatever) findings?

Search for a structural model / interpretation

What is the long-run relation between inflation and output?

1. Time series model

- 1. Time series model
 - The LRPC is not vertical, it is negatively sloped (higher inflation is related to lower output in the LR)

- 1. Time series model
 - The LRPC is not vertical, it is negatively sloped (higher inflation is related to lower output in the LR)
 - The key to get this result: model the LRPC as non-linear relation

What is the long-run relation between inflation and output?

- 1. Time series model
 - The LRPC is not vertical, it is negatively sloped (higher inflation is related to lower output in the LR)
 - The key to get this result: model the LRPC as non-linear relation

 \blacktriangleright when trend inflation \precsim 4% the LRPC is vertical

- 1. Time series model
 - The LRPC is not vertical, it is negatively sloped (higher inflation is related to lower output in the LR)
 - The key to get this result: model the LRPC as non-linear relation
 - \blacktriangleright when trend inflation \precsim 4% the LRPC is vertical
 - when trend inflation > 4% the LRPC is negatively sloped: every percentage point increase in trend inflation is related to about 1% decrease in potential output per year

- 1. Time series model
 - The LRPC is not vertical, it is negatively sloped (higher inflation is related to lower output in the LR)
 - The key to get this result: model the LRPC as non-linear relation
 - \blacktriangleright when trend inflation \precsim 4% the LRPC is vertical
 - ▶ when trend inflation ≿ 4% the LRPC is negatively sloped: every percentage point increase in trend inflation is related to about 1% decrease in potential output per year
- 2. Structural model

- 1. Time series model
 - The LRPC is not vertical, it is negatively sloped (higher inflation is related to lower output in the LR)
 - The key to get this result: model the LRPC as non-linear relation
 - \blacktriangleright when trend inflation \precsim 4% the LRPC is vertical
 - ▶ when trend inflation >> 4% the LRPC is negatively sloped: every percentage point increase in trend inflation is related to about 1% decrease in potential output per year
- 2. Structural model
 - not very far: GNK model (Ascari 2004; Ascari and Sbordone, 2014): higher trend inflation causes lower output in the LR

What is the long-run relation between inflation and output?

- 1. Time series model
 - The LRPC is not vertical, it is negatively sloped (higher inflation is related to lower output in the LR)
 - The key to get this result: model the LRPC as non-linear relation
 - \blacktriangleright when trend inflation \precsim 4% the LRPC is vertical
 - ▶ when trend inflation ≿ 4% the LRPC is negatively sloped: every percentage point increase in trend inflation is related to about 1% decrease in potential output per year

2. Structural model

- not very far: GNK model (Ascari 2004; Ascari and Sbordone, 2014): higher trend inflation causes lower output in the LR
- The model has the two key features from the statistical analysis: non-linear and negatively sloped LRPC

What is the long-run relation between inflation and output?

- 1. Time series model
 - The LRPC is not vertical, it is negatively sloped (higher inflation is related to lower output in the LR)
 - The key to get this result: model the LRPC as non-linear relation
 - \blacktriangleright when trend inflation \precsim 4% the LRPC is vertical
 - ▶ when trend inflation >> 4% the LRPC is negatively sloped: every percentage point increase in trend inflation is related to about 1% decrease in potential output per year

2. Structural model

- not very far: GNK model (Ascari 2004; Ascari and Sbordone, 2014): higher trend inflation causes lower output in the LR
- The model has the two key features from the statistical analysis: non-linear and negatively sloped LRPC
- The estimated LRPC from the structural model turns out to be quantitatively very similar (in a statistical sense) to the one from the time series analysis

Three observables: GDP per capita, inflation and interest rate

Three observables: GDP per capita, inflation and interest rate

Trend-cycle decomposition (Generalization of Steady State VAR, Villani, 2009; Johannes and Mertens, 2021):

$$X_t = \bar{X}_t + \hat{X}_t$$

Three observables: GDP per capita, inflation and interest rate

Trend-cycle decomposition (Generalization of Steady State VAR, Villani, 2009; Johannes and Mertens, 2021):

$$X_t = \bar{X}_t + \hat{X}_t$$

• X_t is a $(n \times 1)$ vector with observed variables at time

• \bar{X}_t is the vector with the long-run values of X_t

• \hat{X}_t is the deviation of X_t from \bar{X}_t

Three observables: GDP per capita, inflation and interest rate

Trend-cycle decomposition (Generalization of Steady State VAR, Villani, 2009; Johannes and Mertens, 2021):

$$X_t = \bar{X}_t + \hat{X}_t$$

• X_t is a $(n \times 1)$ vector with observed variables at time

 \blacktriangleright \bar{X}_t is the vector with the long-run values of X_t

• \hat{X}_t is the deviation of X_t from \bar{X}_t

Cyclical component:

 \hat{X}_t described by an unrestricted VAR as in (1): stable component with unconditional expectation equal to zero

$$A(L) (X_t - \bar{X}_t) = \varepsilon_t \quad \varepsilon_t \sim N(0, \Sigma_{\varepsilon, t})$$
(1)

The model for the long-run

$$\begin{split} \bar{y}_t &= y_t^* + \delta(\bar{\pi}_t) & \text{the trend output as a function of trend inflation} \\ \delta(\bar{\pi}_t) : \delta(0) &= 0 \\ y_t^* &= y_{t-1}^* + g_t + \eta_t^y \\ g_t &= g_{t-1} + \eta_t^g \end{split}$$

 $ar{\pi}_t = ar{\pi}_{t-1} + \eta_t^\pi$ trend inflation is random walk

 $ar{i}_t - ar{\pi}_t = cg_t + z_t$ long-run Fisher equation $z_t = z_{t-1} + \eta_t^z$

A non-linear long-run Phillips curve

Our choice of $\delta(\bar{\pi}_t)$ is a piecewise linear function:

$$\begin{split} \bar{y}_t &= y_t^* + \delta(\bar{\pi}_t) \\ \delta(\bar{\pi}_t) &= \begin{cases} k_1 \bar{\pi}_t & \text{if } \bar{\pi}_t \leq \tau \\ k_2 \bar{\pi}_t + c_k & \text{if } \bar{\pi}_t > \tau \end{cases} \end{split}$$

- It can approximate potential non-linearity without imposing strong assumptions on the functional form
- It is easy to interpret
- It is simpler to treat: methodological contribution

A piecewise linear approach

The model can be written as:

$$\bar{X}_{t} = D(\theta_{t}) + H(\theta_{t})\theta_{t}$$
⁽²⁾

$$\theta_{t} = M(\theta_{t}) + G(\theta_{t}) \theta_{t-1} + P(\theta_{t}) \eta_{t}$$
(3)

where, in particular

$$(D, H, M, G, P) = \begin{cases} (D_1, H_1, M_1, G_1, P_1) & \text{if } \bar{\pi}_t \le \tau \\ (D_2, H_2, M_2, G_2, P_2) & \text{if } \bar{\pi}_t > \tau \end{cases}$$
(4)

Methodological contribution: we characterize the likelihood and the posterior distribution of θ_t = (y
_t, π
_t, g_t, z_t) analytically

Compromise between efficiency and misspecification

Black: no misspecification - likelihood and posterior not available analytically

Red: misspecification - likelihood and posterior available analytically

Green: less misspecification - likelihood and posterior available analytically

Estimation

Bayesian approach, US data, sample from 1960Q1 to 2008Q2

Two sources of non linearity: stochastic volatility and a piecewise linear LRPC => Particle filtering approach

- Latent processes: "Rao-Blackwellization", thanks to the analytical results on the piecewise linear model ⇒ we can analytically characterize the likelihood function and posterior distribution of the latent states
- 2. **Parameters**: Particle filtering allows to jointly approximate the latent states and the posterior distribution of the parameters
 - Particle learning by Carvalho et al. (2010); see also Mertens and Nason (2020)
 - Mixture of Normal distributions as approximation of the posterior of τ (Liu and West, 2001)

Parameter estimates - prior and posterior distributions

Prior				Posterior	
Parameter	Density	Mean	Standard Deviation	Model L	Model PWL
k1	Normal	0.0	0.6	-0.15	-0.07
<i>k</i> ₂	Normal	0.0	0.6	[-0.49 0.19]	-0.92 [-1.35 - 0.47]
τ	Normal	4.0	0.3		4.09 [3.88 4.29]
с	Normal	4.0	0.75	3.53 [3.28 3.78]	2.93 [2.68 3.18]
-	Density	Mean	Degrees of freedom		
σ_{π}^2	Inverse Gamma	0.25 ²	15	0.2^2 [0.18 ² 0.23 ²]	0.23^2 [0.21 ² 0.26 ²]
σ_y^2	Inverse Gamma	0.5 ²	15	0.49^2 [0.45 ² 0.54 ²]	0.59^2
σ_g^2	Inverse Gamma	0.05 ²	15	0.043 ² [0.039 ² 0.048 ²]	0.05 ² [0.042 ² 0.058 ²]
σ_z^2	Inverse Gamma	0.15 ²	15	0.14^2 [0.13 ² 0.16 ²]	0.17^2 [0.14 ² 0.19 ²]

Posterior median and the 90% probability interval in brackets

Estimation results - Linear model

A vertical (or flat) long-run Phillips curve

Figure: Posterior distributions of the slope of the LRPC - Linear model.

Estimation results - Linear model

Figure: Inference of the slope k_1 - Linear model.

Estimation results - Piecewise linear model

Non linear and negatively sloped long-run Phillips curve

Figure: Posterior distributions of the slopes of the LRPC - Piecewise linear model.

Estimation results - Piecewise linear model

kı

k2

Long-run Phillips curve - Piecewise linear model

Figure: LRPC - Piecewise linear model. Median and 90% probability interval.

Trend inflation estimate - Piecewise linear model

Figure: Inflation and trend inflation - Piecewise linear model.

The cost of trend inflation: the long-run output gap

Figure: Long-run output gap estimated through the piecewise linear model.

The structural model

- A variant of Ascari and Ropele (2009) GNK model:
 - (external) habit formation in consumption
 - Generalized NKPC with trend inflation (no indexation)
 - Taylor-type monetary policy rule
- Time varying stochastic trend inflation => methodological contribution, estimate a DSGE model with time-varying steady state
- Four structural shocks: discount factor, technology, monetary policy and trend inflation (allow for stochastic volatility)
- ► LRPC is:
 - Non-linear
 - Negatively sloped

The costs of trend inflation

- Higher trend inflation increases the average markup thus reducing aggregate output
- Price stickiness => price dispersion, dispersion in the demand for goods and therefore inefficiency in the quantity produced

$$N_t = \int_0^1 N_{i,t} di = \int_0^1 \left(\frac{Y_{i,t}}{A_t}\right)^{\frac{1}{1-\alpha}} di = \underbrace{\int_0^1 \left(\frac{P_{i,t}}{P_t}\right)^{\frac{-\varepsilon}{1-\alpha}} di}_{s_t} \left(\frac{Y_t}{A_t}\right)^{\frac{1}{1-\alpha}}$$

Aggregate output is:

$$Y_t = \frac{A_t}{s_t^{1-\alpha}} N_t^{1-\alpha}$$

with long-run price dispersion: $\bar{s}_t = g(\bar{\pi}_t)$

Higher trend inflation leads to higher average markup and price dispersion and therefore increases output inefficiency

Estimation

The parameters of the model depend on trend inflation:

$$\Gamma_{0}(\overline{\pi}_{t})\hat{Z}_{t} = \Gamma_{1}(\overline{\pi}_{t})\hat{Z}_{t-1} + \Psi(\overline{\pi}_{t})\varepsilon_{t} + \Pi(\overline{\pi}_{t})\eta_{t},$$
(5)

So the state space has time varying coefficients:

$$y_t = c_1 + F\hat{Z}_t$$

$$\hat{Z}_t = c_{2,t} + M_{z,t}\hat{Z}_{t-1} + M_{\varepsilon,t}\varepsilon_t \qquad \varepsilon_t \sim N(0, \Sigma_{\varepsilon,t})$$
(6)

 Two sources of non linearity: stochastic volatility and time-varying trend inflation

We use the same particle filtering strategy as before

• GNK model estimates

Trend inflation estimate - GNK model

Figure: Inflation and trend inflation - GNK model.

Stochastic volatility estimates

Figure: Stochastic volatility of the structural shocks

Comparing long-run Phillips curve: VAR and GNK

Figure: LRPC: median (continuous line) and 90% probability interval (dashed lines) - comparison between VAR (blue) and GNK (black)

Comparing long-run output gap: VAR and GNK

Figure: Comparison between long-run output gap estimates: VAR (blue) and GNK (black).

What is the long-run relation between inflation and output?

1. Time series model

- 1. Time series model
 - The LRPC is not vertical, it is negatively sloped (higher inflation is related to lower output in the LR)

- 1. Time series model
 - The LRPC is not vertical, it is negatively sloped (higher inflation is related to lower output in the LR)
 - The key to get this result: model the LRPC as non-linear relation

- 1. Time series model
 - The LRPC is not vertical, it is negatively sloped (higher inflation is related to lower output in the LR)
 - The key to get this result: model the LRPC as non-linear relation
 - \blacktriangleright when trend inflation \precsim 4% the LRPC is vertical

- 1. Time series model
 - The LRPC is not vertical, it is negatively sloped (higher inflation is related to lower output in the LR)
 - The key to get this result: model the LRPC as non-linear relation
 - \blacktriangleright when trend inflation \precsim 4% the LRPC is vertical
 - ▶ when trend inflation ≿ 4% the LRPC is negatively sloped: every percentage point increase in trend inflation is related to about 1% decrease in potential output per year

- 1. Time series model
 - The LRPC is not vertical, it is negatively sloped (higher inflation is related to lower output in the LR)
 - The key to get this result: model the LRPC as non-linear relation
 - \blacktriangleright when trend inflation \precsim 4% the LRPC is vertical
 - when trend inflation > 4% the LRPC is negatively sloped: every percentage point increase in trend inflation is related to about 1% decrease in potential output per year
- 2. Structural model

What is the long-run relation between inflation and output?

- 1. Time series model
 - The LRPC is not vertical, it is negatively sloped (higher inflation is related to lower output in the LR)
 - The key to get this result: model the LRPC as non-linear relation
 - \blacktriangleright when trend inflation \precsim 4% the LRPC is vertical
 - ▶ when trend inflation ≿ 4% the LRPC is negatively sloped: every percentage point increase in trend inflation is related to about 1% decrease in potential output per year

2. Structural model

We interpret these findings through the lens of a GNK model (Ascari 2004; Ascari and Sbordone, 2014): higher trend inflation causes lower output in the LR

What is the long-run relation between inflation and output?

- 1. Time series model
 - The LRPC is not vertical, it is negatively sloped (higher inflation is related to lower output in the LR)
 - The key to get this result: model the LRPC as non-linear relation
 - \blacktriangleright when trend inflation \precsim 4% the LRPC is vertical
 - ▶ when trend inflation ≿ 4% the LRPC is negatively sloped: every percentage point increase in trend inflation is related to about 1% decrease in potential output per year

2. Structural model

- We interpret these findings through the lens of a GNK model (Ascari 2004; Ascari and Sbordone, 2014): higher trend inflation causes lower output in the LR
- The model has the two key features from the statistical analysis: non-linear and negatively sloped LRPC

What is the long-run relation between inflation and output?

- 1. Time series model
 - The LRPC is not vertical, it is negatively sloped (higher inflation is related to lower output in the LR)
 - The key to get this result: model the LRPC as non-linear relation
 - \blacktriangleright when trend inflation \precsim 4% the LRPC is vertical
 - ▶ when trend inflation >> 4% the LRPC is negatively sloped: every percentage point increase in trend inflation is related to about 1% decrease in potential output per year

2. Structural model

- We interpret these findings through the lens of a GNK model (Ascari 2004; Ascari and Sbordone, 2014): higher trend inflation causes lower output in the LR
- The model has the two key features from the statistical analysis: non-linear and negatively sloped LRPC
- The estimate from this structural model yields costs implied by the LRPC statistically consistent with the time series model

EXTRA

Econometric strategy

We use a particle filtering strategy to approximate the joint posterior distribution of latent processes and parameters:

Latent processes: a "conditional piecewise linear model"

$$p\left(\theta_{t}, \log s_{t} | \theta_{t-1}, \log s_{t-1}, X_{1:t}\right) = \underbrace{p\left(\theta_{t} | \log s_{t}, \theta_{t-1}, \log s_{t-1}, X_{1:t}\right)}_{"Full \ conditional \ posterior"} \underbrace{p\left(\log s_{t} | \theta_{t-1}, \log s_{t-1}, Y_{1:t}\right)}_{"blind \ proposal"}$$

Parameters:

- Particle learning by Carvalho Johannes Lopes and Polson (2010); see also Mertens and Nason (2020)
- Mixture of Normal distributions as approximation of the posterior of τ (Liu and West, 2001)

Strategy for parameter learning follows Chen, Petralia and Lopes (2010) and Ascari, Bonomolo and Lopes (2019)

Fully adapted particle filter

At t-1: $\left\{\theta_{t-1}^{(i)}\right\}_{i=1}^{N}$ with corresponding weights $\left\{w_{t-1}^{(i)}\right\}_{i=1}^{N}$ approximate $p\left(\theta_{t-1}|X_{1:t-1}\right)$

(1) RESAMPLE
(a) Compute
$$\tilde{w}_t^{(i)} \propto p\left(X_t | \theta_{t-1}^{(i)}, X_{1:t-1}\right)$$

(b) Resample $\left\{\theta_{t-1}^{(i)}\right\}_{i=1}^N$ using $\left\{\tilde{w}_t^{(i)}\right\}_{i=1}^N$ and get $\left\{\tilde{\theta}_{t-1}^{(i)}\right\}_{i=1}^N$

(2) PROPAGATE

Draw
$$heta_t^{(i)} \sim p\left(heta_t | ilde{ heta}_{t-1}^{(i)}, X_{1:t}
ight)$$

 p (X_t|θ⁽ⁱ⁾_{t-1}, X_{1:t-1}) is a weighted sum of Unified Skew Normal distributions (Arellano-Valle and Azzalini, 2006)
 p (θ_t|θ⁽ⁱ⁾_{t-1}, X_{1:t-1}) is a weighted sum of multivariate truncated Normal distributions

Partially adapted particle filter

At
$$t - 1$$
: $\left\{\theta_{t-1}^{(i)}, \log s_{t-1}^{(i)}\right\}_{i=1}^{N}$ with corresponding weights $\left\{w_{t-1}^{(i)}\right\}_{i=1}^{N}$ approximate $p\left(\theta_{t-1}, \log s_{t-1} | X_{1:t-1}\right)$
(1) RESAMPLE
(a) Compute $\tilde{w}_{t}^{(i)} \propto w_{t-1}^{(i)} p\left(X_{t} | \theta_{t-1}^{(i)}, g\left(\log s_{t-1}^{(i)}\right), X_{1:t-1}\right)$
(b) Resample $\left\{\theta_{t-1}^{(i)}, \log s_{t-1}^{(i)}\right\}_{i=1}^{N}$ using $\left\{\tilde{w}_{t}^{(i)}\right\}_{i=1}^{N}$
Let the new particles be $\left\{\tilde{\theta}_{t-1}^{(i)}, \log \tilde{s}_{t-1}^{(i)}\right\}_{i=1}^{N}$.

Partially adapted particle filter

(2) PROPAGATE
(a) Draw
$$\log s_t^{(i)} \sim N\left(\log \tilde{s}_{t-1}^{(i)}, \Sigma_{\nu}\right)$$

(b) Draw $\theta_t^{(i)} \sim p\left(\theta_t | \log s_t^{(i)}, \tilde{\theta}_{t-1}^{(i)}, X_{1:t}\right)$
(3) NEW WEIGHTS
Compute $w_t^{(i)} \propto \frac{p\left(X_t | \tilde{\theta}_{t-1}^{(i)}, \log s_t^{(i)}, X_{1:t-1}\right)}{p\left(X_t | \tilde{\theta}_{t-1}^{(i)}, g\left(\log \tilde{s}_{t-1}^{(i)}\right), X_{1:t-1}\right)}$

Back

Household

The economy is populated by a representative agent with utility

$$E_0 \sum_{t=0}^{\infty} \beta^t d_t \left[\ln \left(C_t - h \mathbf{C}_{t-1} \right) - d_n \frac{N_t^{1+\varphi}}{1+\varphi} \right]$$

Budget constraint is given by

$$P_t C_t + R_t^{-1} B_t = W_t N_t + D_t + B_{t-1}$$

 d_t is a discount factor shock which follows an AR(1) process

$$\ln d_t = \rho_d \ln d_{t-1} + \epsilon_{d,t}$$

Final good firm

Perfectly competitive final good firms combine intermediate inputs

$$Y_{t} = \left[\int_{0}^{1} Y_{i,t}^{\frac{\varepsilon-1}{\varepsilon}} di\right]^{\frac{\varepsilon}{\varepsilon-1}} \qquad \varepsilon > 1$$

Price index is a CES aggregate of intermediate input prices

$$P_t = \left[\int_0^1 P_{i,t}^{1-\varepsilon} di\right]^{\frac{1}{1-\varepsilon}}$$

The demand schedule for intermediate input

$$Y_{i,t} = \left[\frac{P_{i,t}}{P_t}\right]^{-\varepsilon} Y_t$$

Intermediate good firm

Each firm i produces according to the production function

$$Y_{i,t} = A_t N_{i,t}^{1-\alpha}$$

where A_t denotes the level of technology and its growth rate $g_t \equiv A_t/A_{t-1}$ follows

$$\ln g_t = \ln \overline{g} + \epsilon_{g,t}$$

Price setting

Firms adjust prices $P^*_{i,t}$ to maximize expected discounted profits with probability 0 $<1-\theta<1$

$$E_{t}\sum_{j=0}^{\infty}\theta^{j}\beta^{j}\frac{\lambda_{t+j}}{\lambda_{t}}\left[\frac{P_{i,t}^{*}}{P_{t+j}}Y_{i,t+j}-\frac{W_{t+j}}{P_{t+j}}\left[\frac{Y_{i,t+j}}{A_{t+j}}\right]^{\frac{1}{1-\alpha}}\right]$$

subject to the demand schedule

$$Y_{i,t+j} = \left[\frac{P_{i,t}^*}{P_{t+j}}\right]^{-\varepsilon} Y_{t+j},$$

where λ_t is the marginal utility of consumption.

Back

The Phillips curve

The first order condition for the optimized relative price $x_t (= \frac{P_{i,t}^*}{P_t})$ is given by

$$(x_t)^{1+\frac{\epsilon\alpha}{1-\alpha}} = \frac{\varepsilon}{(\varepsilon-1)(1-\alpha)} \frac{E_t \sum_{j=0}^{\infty} (\theta\beta)^j \lambda_{t+j} \frac{W_{t+j}}{P_{+j}} \left[\frac{Y_{t+j}}{A_{t+j}}\right]^{\frac{1}{1-\alpha}} \pi_{t|t+j}^{\frac{\varepsilon}{(1-\alpha)}}}{E_t \sum_{j=0}^{\infty} (\theta\beta)^j \lambda_{t+j} \pi_{t|t+j}^{\varepsilon-1} Y_{t+j}}$$

where
$$\pi_{t|t+j} = \frac{P_{t+1}}{P_t} \times ... \times \frac{P_{t+j}}{P_{t+j-1}}$$
 for $j \ge 1$ and $\pi_{t|t} = \pi_t$.

Back
Price setting contd.

Aggregate price level evolves according to

$$P_t = \left[\int_0^1 P_{i,t}^{1-\varepsilon} di\right]^{\frac{1}{1-\varepsilon}} \Rightarrow$$
$$x_t = \left[\frac{1-\theta\pi_t^{\varepsilon-1}}{1-\theta}\right]^{\frac{1}{1-\varepsilon}}.$$

Finally, price dispersion $s_t \equiv \int_0^1 (\frac{P_{i,t}}{P_t})^{-\varepsilon} di$ can be written recursively as:

$$s_t = (1 - \theta) x_t^{-\varepsilon} + \theta \pi_t^{\varepsilon} s_{t-1}$$

Monetary policy

$$\frac{R_t}{\overline{R}_t} = \left(\frac{R_{t-1}}{\overline{R}_t}\right)^{\rho} \left[\left(\frac{\pi_t}{\overline{\pi}_t}\right)^{\psi_{\pi}} \left(\frac{Y_t}{Y_t^n}\right)^{\psi_{\chi}} \left(\frac{g_t^{y}}{\overline{g}}\right)^{\psi_{\Delta y}} \right]^{1-\rho} e^{\varepsilon_{r,t}}$$

$$\ln \overline{\pi}_t = \ln \overline{\pi}_{t-1} + \epsilon_{\overline{\pi},t}$$

where $\overline{\pi}_t$ denotes trend inflation, Y_t^n is the flex-price output and g_t^y is growth rate of output.

► Back

Parameter estimates - prior and posterior distributions

Parameter		Prior		Posterior
	Density	Mean	St Dev	
ψ_{π}	Gamma	1.5	0.5	2.36 [2.04 2.7]
$\psi_{ imes}$	Gamma	0.125	0.05	0.13 [0.08 0.21]
$\psi_{\Delta y}$	Gamma	0.125	0.05	0.34
ρ	Beta	0.7	0.1	0.75 [0.72 0.79]
h	Beta	0.5	0.1	0.39
<i>r</i> *	Gamma	2	0.5	2.12 [1.87 2.41]
θ	Beta	0.5	0.1	0.49 [0.45 0.52]
$ ho_d$	Beta	0.7	0.1	0.79 [0.74 0.83]

Posterior median and 90% credibility interval in brackets

Implications for short-run output gap

Figure: Comparison between short-run output gap estimates.