
Can Deficits Finance Themselves?*

George-Marios Angeletos† Chen Lian‡ Christian K. Wolf§

April 20, 2023

Abstract

We study how fiscal deficits are financed in environments with two key features: (i) nominal rigid-

ity and (ii) a violation of Ricardian equivalence due to finite lives or liquidity constraints. In such

environments, deficits contribute to their own financing via two channels: a boom in real eco-

nomic activity, which expands the tax base, and a surge in inflation, which erodes the real value of

nominal government debt. Our main theoretical result relates the potency of such self-financing

to the timing of fiscal adjustment. Pushing the fiscal adjustment further into the future helps gen-

erate a larger and more persistent boom, leading to more self-financing. Full self-financing is pos-

sible in the limit as fiscal adjustment is delayed more and more: the government can run a deficit

today, refrain from tax hikes or spending cuts in the future, and nevertheless see its debt converge

back to its initial level. We conclude by arguing that a large degree of self-financing is not only

theoretically possible but also quantitatively relevant.
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1 Introduction

Suppose the government runs a deficit today in order to stimulate aggregate demand. Suppose further

that there is no “free lunch” of the type considered in the recent “r < g ” literature (Blanchard, 2019;

Reis, 2022); i.e., the government’s net cost of borrowing is positive. What does the government have

to do in order to make sure that public debt eventually returns back to its initial level?

The most conventional answer is fiscal adjustment: sooner or later, the government must adopt a

package of tax hikes and/or spending cuts in order to pay down the accumulated debt. In this paper,

we investigate a different margin—what we refer to as the self-financing of fiscal deficits.

The basic idea is simple. Insofar as a deficit triggers a boom, it can contribute to its own financing

via two complementary channels: by expanding the tax base, which helps generate additional tax

revenue without any adjustment in tax rates; and by triggering inflation, which helps reduce the real

value of the government’s nominal liabilities (i.e., debt erosion). Our contribution is to shed light on

the theoretical properties and the quantitative relevance of this self-financing mechanism.1

We first verify that some self-financing obtains naturally in environments that combine two key

features: a failure of Ricardian equivalence, so that deficits can stimulate aggregate demand; and

nominal rigidity, so that aggregate demand can drive real economic activity and thereby also infla-

tion. We next show that, in such environments, the degree of self-financing increases as the fiscal

adjustment is delayed. Intuitively, the further the adjustment is delayed, the larger the boom induced

by the initial deficit, thus raising the potency of both of our two self-financing channels. Pushing this

logic to its limit, we obtain our headline result: as the fiscal adjustment is delayed more and more, the

tax hike needed to bring debt back to trend vanishes. In other words, the initial deficit pays for itself.

Our contribution is completed by evaluating the quantitative relevance of this result.

Environment. Our baseline model is kept purposefully close to the textbook New Keynesian model

(Galí, 2008; Woodford, 2003b). The supply block is exactly the same and boils down to the New

Keynesian Phillips curve (NKPC). The only change is in the demand block, which now consists of

overlapping generations of perpetual-youth consumers (OLG à la Blanchard, 1985). Denote the sur-

vival probability by ω ∈ (0,1]. When ω = 1, our model reduces to the standard permanent-income

representative-agent (PIH-RANK) benchmark. When insteadω< 1, our model shares two key proper-

ties with quantitative heterogeneous-agent (HANK) models: (i) consumers discount future disposable

income more heavily than in the PIH benchmark; and (ii) they have a larger short-run propensity to

consume (MPC). As will become clear, our lessons derive not from the OLG structure per se, but rather

from these two more general and empirically relevant properties of consumer demand.

1The tax base and inflation channels bring to mind, respectively, DeLong and Summers (2012) and the Fiscal Theory of
the Price Level (FTPL). We expand on these relations in due course.
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Fiscal policy is represented by a rule for how tax revenue (and thereby the primary surplus) re-

sponds to changes in aggregate income and in public debt. The dependence on aggregate income

captures the tax base channel—as output goes up, so automatically does tax revenue. The depen-

dance on public debt, on the other hand, captures the speed of fiscal adjustment, or equivalently the

horizon at which the government commits to hike taxes as needed to bring debt back to trend.2 Our

analysis will reveal how this policy parameter is a key determinant of the degree of self-financing.

Finally, monetary policy is represented by a rule for how nominal (and thereby real) rates ad-

just based on the state of the economy. For the bulk of our analysis, we concentrate on the case in

which the monetary authority keeps the (expected) real rate constant. This case serves as a conve-

nient benchmark and represents a “neutral” monetary policy in the following sense: it neither offsets

the fiscal stimulus by discouraging private spending nor does it increase fiscal space by allowing the

government’s real cost of borrowing to fall.

The self-financing result. Starting from steady state, we shock the economy with a one-off, deficit-

financed lump-sum transfer to households. We consider this experiment as a theoretical proxy for the

various rounds of “stimulus checks” recently seen in the U.S. We then ask: How much of this deficit

shock can be self-financed in equilibrium via the aforementioned tax base and inflation channels? Or,

conversely, how large are the tax hikes needed, sooner or later, to bring public debt back to its trend?

Our first observation is that some self-financing is possible if and only if ω < 1. When ω = 1 (i.e.,

PIH-RANK), Ricardian equivalence holds, and aggregate demand is invariant to both the aforemen-

tioned shock and the timing of the subsequent fiscal adjustment. It follows that both self-financing

channels are idle—the date-0 tax cut is fully financed with later tax hikes.3 When instead ω < 1, Ri-

cardian equivalence fails, and the deficit—which now represents a net transfer from future genera-

tions to current generations or, less literally, helps some consumers overcome liquidity constraints—

stimulates aggregate demand. With nominal rigidities, this increase in aggregate demand translates

to an increase in real income and, via the NKPC, to an increase in the nominal price level. The two

self-financing channels are thus operative: the real boom leads to higher tax revenues even without

changes in tax rates; and the accompanying inflation lowers the real government debt burden.

The main question of the paper is how large such self-financing can be. We let ν denote the overall

degree of self-financing; i.e., the fraction of the initial deficit that is financed via the tax base and in-

flation channels. The residual, 1−ν, then equals the discounted present value of the future tax hikes

needed for each dollar of current deficit. Our headline result is that, if ω< 1, then ν converges mono-

2In FTPL jargon, the last statement means that fiscal policy is “passive” or “Ricardian,” which in turn highlights that our
self-financing result is distinct from that found in the FTPL. We return to this point shortly.

3To be precise, these statements are true as long as we select the conventional or “fundamental” solution of the New
Keynesian model. We elaborate on this below, in the paragraph entitled “Relation to FTPL.”
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tonically towards 1 as fiscal adjustment is pushed further into the future. In other words, delaying the

fiscal adjustment reduces its magnitude, with full self-financing becoming possible in the limit.

The economics of self-financing. The economic intuition for our self-financing result can be un-

derstood through analogy with a simple two-period economy. Periods are indexed by t ∈ {0,1}; prices

are fully rigid, so only the tax base channel will be operative; and demand at t = 0 is myopic (i.e., in-

dependent of outcomes at t = 1) and proportional to concurrent disposable income. Echoing our full

dynamic model, the government pays out transfers of size ε> 0 to households at t = 0, and then hikes

taxes at t = 1 as much as necessary to bring total government debt down to its initial level.

By a simple static Keynesian cross logic, date-0 aggregate output is given as

y = MPC

1−MPC(1−τy )
×ε,

where MPC ∈ (0,1) is the household’s marginal propensity to consume out of disposable income and

τy ∈ (0,1) is the rate of proportional income taxation. The boom generates additional tax revenue at

t = 0 of τy ×y (i.e., the tax base channel), and so the required date-1 tax hike is just ε−τy ×y . It follows

that the overall degree of self-financing in this simple economy is given as

ν≡ τy × y

ε
= τy ×MPC

1−MPC× (1−τy )
.

We note two important properties of this expression. First, ν is strictly increasing in the MPC. This

is because a larger MPC maps to both a larger partial equilibrium effect on consumer spending (nu-

merator) and stronger general equilibrium amplification (denominator). Second, ν = 1 if and only if

MPC = 1. Intuitively, in that case, the partial equilibrium response is 1 and the Keynesian multiplier is
1

1−(1−τy ) = 1
τy

, so every dollar of initial transfer ends up generating exactly one dollar of additional tax

revenue—i.e., full self-financing obtains.

Our fully-fledged dynamic model closely echoes these intuitions if and only if ω < 1. To see the

connection, translate “t = 0” in the above example to an initial time interval in our model that is both

sufficiently long and sufficiently distant from the eventual tax hike (i.e., the “short run”); “t = 1” to

the time of the delayed tax hike (i.e., the “long run”); and “MPC” as the cumulative MPC over the

initial interval. Two properties of our economy then complete the connection. The first property is

discounting: consumers discount any future disposable income, and hence also any future taxes, at a

higher rate than the interest rate faced by the government. This implies that tax hikes in the far-ahead

future have little effect on consumer demand in the short run, echoing the lack of feedback from

date-1 taxes to date-0 demand in the two-period economy. The second property is front-loading:

consumers spend any additional income receipt quickly. This implies that the cumulative MPC over

the short run can be close to 1, and so the general equilibrium feedback plays out faster than in the
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PIH benchmark. Together, these properties guarantee that the limit of our economy as the tax hike in

pushed further into the future is akin to letting MPC → 1 in the simple example.

Tax base vs inflation. The above intuition emphasized the tax base channel by assuming perfectly

rigid prices. More generally, the fiscal stimulus partially translates into inflation rather than fully into

real output, but without otherwise changing the monotonicity and limit properties of ν. The only

material change is, naturally, the relative contribution of the two channels: as prices become more

flexible and so the Phillips curve becomes steeper, more self-financing occurs through debt erosion.

Generality and extensions. We illustrate the versatility of the logic behind our self-financing result

with a number of extensions.

Our first two extensions generalize the demand block of the economy. The first one accommo-

dates a more flexible specification for consumer demand. This allows us to see more clearly how

our self-financing result depends on measurable properties of the aggregate MPCs out of current in-

come, future income, and wealth. Echoing the intuition provided above, the key conditions for self-

financing to occur are discounting and front-loading: consumers need to respond relatively little to

expectations of future taxes, so that the “stimulus checks” policy can indeed stimulate demand; and

they also need to spend their transfer receipts relatively quickly, so that the resulting Keynesian boom

plays out fast. The second extension accommodates investment. Under standard assumptions about

firm behavior, the Keynesian cross logic behind our result continues to apply, and our self-financing

result goes through almost unchanged.

The remaining extensions generalize our assumptions about fiscal and monetary policy. We first

allow for the future fiscal adjustment to be distortionary, rather than lump-sum. If so, future taxes ap-

pear as additional cost-push shocks in the model’s supply block, while having no effect on the demand

side. Switching from lump-sum to distortionary taxes thus affects the split between tax base and in-

flation self-financing, but otherwise leaves the core logic of our self-financing results unchanged. By

the same token, our self-financing result also readily extends from “stimulus checks” to government

purchases. Lastly, we ask what happens when the monetary authority moves away from our “neu-

tral” benchmark, either accommodating or leaning against the fiscally-led boom. If nominal rates

rise less than inflation, then real rates fall, so households front-load spending further and our mech-

anism plays out even faster. Conversely, if real rates are increased, then the deficit-driven boom is

delayed, and so is convergence to the self-financing limit. In particular, if the monetary response is

too aggressive, then full self-financing ceases to be possible.

Relation to FTPL. Our self-financing result shares with the Fiscal Theory of the Price Level (FTPL)

the flavor that deficits are financed not through outright fiscal adjustment, but rather through mar-
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ket movements in prices and/or quantities. The micro-foundations and the economic mechanisms

behind our result, however, are substantially different from those behind the FTPL.4

The prevailing formulation of the FTPL assumes a representative, infinitely-lived, and fully ratio-

nal consumer, similarly to Barro (1974)’s classic on Ricardian equivalence and thus to theω= 1 case in

our model. The FTPL breaks Ricardian equivalence—i.e., it allows debt and deficits to drive aggregate

demand and thereby output and inflation—by assuming that the Taylor principle is violated, open-

ing the door to multiple self-fulfilling equilibria, and then selecting a particular such equilibrium. In

our environment, this mechanism is never at play: the failure of Ricardian equivalence is grounded

on fundamental reasons (finite horizons or liquidity constraints); the fiscal authority is “passive;” and

our self-financing result is robust to an “active” monetary authority that satisfies the Taylor principle.5

Quantitative relevance. To gauge whether a meaningful degree of self-financing is plausible, we dis-

cipline the theory with appropriate evidence on its crucial elements: (i) the deviation from the PIH

benchmark; (ii) the horizon or speed of fiscal adjustment; and (iii) the degree of nominal rigidity. For

(iii), we draw from ample empirical evidence on the slope of the Phillips curve. For (ii), we turn to re-

cent work that tries to measure the speed of fiscal adjustment in practice (Galí, López-Salido and Val-

lés, 2007; Bianchi and Melosi, 2017; Auclert and Rognlie, 2018). Finally, for (i), we review the available

microeconomic evidence on the response of household consumption to income shocks (Fagereng,

Holm and Natvik, 2021), including at relatively far-out horizons. We then calibrate an extended ver-

sion of our baseline model—one that adds a margin of hand-to-mouth consumers—to match this

empirical evidence. This extended, yet still tractable and parsimonious model, is not only capable

of matching the relevant empirical evidence, but also serves as a close proxy for aggregate consumer

behavior in fully-fledged HANK environments (Auclert, Rognlie and Straub, 2018; Wolf, 2021a).

We then use our calibrated model to quantify the effects of “stimulus checks” (defined, again, as

deficit-financed lump-sum transfers to households). We find that such policies can be largely self-

financed if fiscal adjustment is as slow as documented in prior empirical work. We further show that

the tax base channel is the dominant force at work, and that a quantitatively large degree of self-

financing is consistent with relatively small inflationary pressures, unless the Phillips curve is much

steeper than prevailing estimates tend to suggest.

Literature. Our analysis relates and contributes to several strands of literature. First, we offer a dif-

ferent perspective on fiscal space than the “r < g ” literature (Blanchard, 2019; Mehrotra and Sergeyev,

2021; Reis, 2022). Similar to this literature, our results suggest that deficits can be financed without

4Throughout we are concerned primarily with the modern, New Keynesian version of the FTPL (e.g., Cochrane, 2018,
2023), but similar points apply to its original, neoclassical version (Leeper, 1991; Sims, 1994; Woodford, 1995).

5By the same token, our self-financing result, unlike that of the FTPL, is also robust the kind of global-game perturba-
tions used in Angeletos and Lian (2023) to remove the equilibrium indeterminacy of the New Keynesian model.
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future tax hikes. However, unlike that literature, we do not require the real interest rate on govern-

ment debt to be lower than the economy’s real growth rate. Instead, we emphasize how fiscal deficits

can contribute to their own financing by triggering a Keynesian boom. Mian, Straub and Sufi (2022)

touch upon both these issues (“r < g ” and deficit-driven Keynesian booms), but emphasize a self-

financing mechanism different from ours: they focus on how additional debt issuance can reduce the

real interest rate on government debt by triggering inflation along the ZLB.6

Second, we offer a different rationale for why deficits can finance themselves than that found in the

FTPL literature (Leeper, 1991; Sims, 1994; Woodford, 1995; Bassetto, 2002; Cochrane, 2005)—one that

relies on the failure of Ricardian equivalence due to finite horizons or liquidity constraints as opposed

to equilibrium selection. In so doing, we avoid that literature’s most controversial assumption—the

threat to violate the government budget unless a particular equilibrium is selected (Kocherlakota and

Phelan, 1999; Atkeson, Chari and Kehoe, 2010),7 and show self-financing can instead be reconciled

with the standard equilibrium selection of the New Keynesian model (i.e., with “passive” fiscal policy

and “active” monetary policy). We also shift the focus from the inflation/debt erosion channel—the

focal point of the FTPL literature—to the tax base channel, which in our quantitative explorations

actually turns out to be dominant.

Third, we add to the large literature on the effects of fiscal policy within the New Keynesian frame-

work. Woodford (2011) and Christiano, Eichenbaum and Rebelo (2011) are the classic references for

fiscal multipliers in the PIH-RANK benchmark, while Galí, López-Salido and Vallés (2007), Kaplan,

Moll and Violante (2018) and Auclert, Rognlie and Straub (2018) study environments in which Ri-

cardian equivalence fails. It is well-understood within this literature that fiscal deficits can generate

demand-led booms, thus also contributing to their own financing. From this perspective, our paper’s

added value is to characterize the determinants of self-financing and to highlight that self-financing

could even be complete.

Finally, our take-home message echoes that of DeLong and Summers (2012). These authors pro-

vide the high-level arithmetic on fiscal multipliers necessary to generate self-financing without a

micro-founded model. We instead characterize the economic primitives required for self-financing

to be possible, characterize its determinants, and evaluate its quantitative potential.

Outline. Sections 2 and 3 begin by presenting the model and characterizing its equilibrium. Section

4 develops our self-financing result and discusses the economics behind it. Further extensions and

the quantitative analysis follow in Sections 5 and 6, respectively. Section 7 concludes.

6This is akin to the form of monetary accommodation that obtains in our setting when we relax the assumption of
neutral monetary policy and, instead, let real rates fall in response to a deficit-driven Keynesian boom.

7We note that Bassetto (2002) and Cochrane (2005) have disputed this interpretation. This debate, however, is outside
the scope of our paper.
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2 Model

For our main analysis we consider a perpetual-youth, overlapping-generations version of the text-

book New Keynesian model. Similarly to Del Negro, Giannoni and Patterson (2015), Farhi and Wern-

ing (2019), and Angeletos and Huo (2021), mortality risk (finite lives) is a convenient proxy for liquidity

frictions: it breaks Ricardian Equivalence and lets fiscal policy—i.e., debt and deficits—affect aggre-

gate demand. As will become clear, this departure from the PIH benchmark is central to our results.

We will show later how the insights obtained from our baseline model extend to more general aggre-

gate demand structures, including those found in the HANK literature.8

Throughout we study log-linearized dynamics in response to a surprise increase in fiscal deficits.

We use uppercase variables to indicate levels; unless indicated otherwise, lowercase variables denote

log-deviations from the economy’s deterministic steady state. Time is discrete, indexed by t ∈ {0,1, ...}.

2.1 Households

We index households by i = (i1, i2), where i1 ∈ {0,1, . . . } denotes their age and i2 ∈ [0,1] their name. A

household survives from one period to the next with probabilityω ∈ (0,1], so that 1−ω is the mortality

rate. Whenever a household dies, it is replaced by a new household (with the same name i2 but age

reset to i1 = 0). Households do not altruistically value the utility of the future households that replace

them. Taking into account the mortality risk, the expected lifetime utility of any (alive) household i in

period t ∈ {0,1, . . . } is therefore given by

Et

[ ∞∑
k=0

(
βω

)k [
u(Ci ,t+k )− v(Li ,t+k )

]]
, (1)

where Ci ,t+k and Li ,t+k denote household i ’s consumption and labor supply in period t +k (condi-

tional on survival), and preferences take the standard form u(C ) ≡ C 1−1/σ−1
1− 1

σ

and v(L) =χL
1+ 1

ϕ

1+ 1
ϕ

.

Households can save and borrow by trading an actuarially fair, risk-free nominal annuity. Con-

ditional on survival, households therefore enjoy a nominal rate of return equal to It /ω, where It is

the nominal rate on government bonds. Households furthermore receive labor income and dividend

income, given respectively by Wt Li ,t and Qi ,t (both in real terms). Households also pay taxes. The

real tax payment Ti ,t depends on both the individual’s income and aggregate fiscal conditions: i.e.,

Ti ,t =T (Yi ,t , Zt ), where Yi ,t ≡Wt Li ,t +Qi ,t is the household’s total real income, Zt captures aggregate

conditions (including outstanding government debt), and T is a function describing tax policy (to be

specified later). Finally, old households are obliged to make contributions to a “social fund” whose

8Also note that, consistent with Woodford (2003b) and Galí (2008), we will consider a “moneyless” economy. There is
thus no seignorage revenue and the channel in Sargent and Wallace (1981) will not help finance deficits.
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proceeds are distributed to the newborn households; the role of this fund is explained momentarily.

All in all, the date-t budget constraint of household i is therefore given as

Ai ,t+1 = It

ω︸︷︷︸
annuity

(
Ai ,t +Pt ·

(
Wt Li ,t +Qi ,t︸ ︷︷ ︸

Yi ,t

−Ci ,t −Ti ,t +Si ,t
))

, (2)

where Ai ,t denotes i ’s nominal saving at the beginning of date t , Pt is the date-t price level, and Si ,t is

the transfer from or contribution to the fund, with Si ,t = Snew > 0 for newborns and Si ,t = Sold < 0 for

old households (and where (1−ω)Snew +ωSold = 0, ensuring that the fund is balanced).

Compared to Blanchard (1985), the only novelty in our set-up is the social fund. We will set Snew =
D ss (and therefore Sold =−1−ω

ω
D ss), where D ss is the real steady-state value of public debt (and so in

equilibrium also the real steady-state value of private wealth). The fund thus ensures that all cohorts,

regardless of age, enjoy the same wealth and hence the same consumption in steady state. This in turn

affords two simplifications. First, it simplifies aggregation when we log-linearize the model around its

steady state, with every cohort equally weighted in aggregate demand. Second, it guarantees that the

steady state of our model is invariant to both ω and the steady-state level of public debt, and hence

is exactly the same as its RANK counterpart. The two models thus differ only in terms of how fiscal

policy influences output gaps, cleanly isolating the mechanism that we are interested in.

It remains to specify how household income is determined. First, we assume that all households

receive identical shares of dividends. Second, we abstract from heterogeneity in labor supply. Specif-

ically, we assume that labor supply is intermediated by labor unions. Those unions bargain on behalf

of households, equalizing the (post-tax) real wage and the marginal rate of substitution between con-

sumption and labor supply. Since all households work the same hours, it follows that all households

receive the same labor income. Overall, the resulting household labor supply relation is exactly the

same as in the textbook New Keynesian model.9 Putting the pieces together, we conclude that Yi ,t = Yt

and Ti ,t = Tt —in any given period, all households receive the same income and face the same taxes.

2.2 Firms

The production side of the economy is the same as in the textbook New Keynesian model: there is a

unit-mass continuum of monopolistically competitive retailers who set prices subject to a standard

Calvo friction, hire labor on a spot market, and pay out all their profits as dividends back to house-

holds. Combined with our assumptions on household labor supply, this implies that the supply block

of our economy reduces to the standard New Keynesian Phillips curve (NKPC).

9To be precise, this statement presumes that the tax distortion is time-invariant, which is indeed the case under our
upcoming specification for taxes. Further details on the labor supply block of our economy are provided in Appendix A.1.
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2.3 Policy

The government consists of two blocks: a fiscal authority issuing debt and setting taxes, and a mone-

tary authority setting nominal interest rates.

Fiscal policy. We (for now) abstract from government spending and let Bt denote the total nominal

public debt outstanding at the beginning of period t . We can then write the nominal flow budget

constraint of the government as follows:

1

It
Bt+1 = Bt −Pt Tt , (3)

where Tt ≡
∫

Ti ,t di is the total real tax revenue at t . Letting D t ≡ Bt /Pt denote the real value of public

debt, Πt+1 ≡ Pt+1/Pt the realized inflation between t and t + 1, and Rt ≡ It /Et [Πt+1] the (expected)

real rate at t , we can rewrite the government budget in real terms as

D t+1 = Rt (D t −Tt )

(
Et [Πt+1]

Πt+1

)
.

This underscores how an inflation surprise between t and t+1 erodes the real value of the outstanding

nominal debt, thus reducing the tax revenue needed to balance the government budget.

We henceforth log-linearize around a steady state in which inflation is zero, real allocations are

given by their flexible-price counterparts, and the real debt burden is constant at some arbitrary level

D ss . Thanks to the annuities (which offset the mortality risk) and the social fund (which makes sure

that all cohorts enjoy identical wealth and consumption in steady state), the steady-state real rate

is the same as in the PIH-RANK counterpart: R ss = 1
β
> 1.10 Steady-state taxes then satisfy T ss =

(1−β)D ss . While we will throughout focus on on the empirically relevant scenario with D ss > 0, we

do wish to accommodate D ss = 0, and so we let dt ≡ (D t −D ss)/Y ss , bt ≡ (Bt −B ss)/Y ss , and tt ≡
Tt /Y ss—i.e., we measure fiscal variables in terms of absolute deviations (rather than log-deviations)

from steady state, scaled by steady-state output. Re-writing (3) in real terms and linearizing, we obtain

dt+1 = 1

β
(dt − tt )+ D ss

Y ss
rt︸ ︷︷ ︸

expected debt burden tomorrow

+ D ss

Y ss (Et [πt+1]−πt+1)︸ ︷︷ ︸
debt erosion due to inflation surprise

(4)

where rt ≡ log(Rt /R ss) , πt+1 ≡ log(Πt+1/Πss) , and Y ss is the steady-state level of output. The govern-

ment must satisfy both the above flow constraint (at each t ) as well as the familiar no-Ponzi condition

(in the limit as t →∞). We can thus go back and forth between the infinite sequence of flow budget

constraints and the corresponding integrated intertemporal budget constraint.11

10Had we allowed for steady-state growth, this would translate to “r > g ”. Thus, and unlike the literature spurred by
Blanchard (2019), we are in an environment where the real cost of government borrowing is positive.

11Note that this does not necessarily rule out explosive debt: debt could still explode, provided that it does so at a rate
lower that the steady-state real interest. But such an explosion would be at odds, not only with the spirit of our exercise, but
also with the log-linearization of the economy. Throughout the subsequent analysis, we will therefore restrict attention to
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It remains to specify a rule for how taxes adjust over time to balance the intertemporal government

budget. This adjustment occurs in two ways. First, there is a time-invariant distortionary tax τy ∈
[0,1) on household labor and dividend income (and thus on total income). As a result, tax revenue

fluctuates automatically during booms or recessions, without the fiscal authority needing to adjust

the tax code—i.e., the “tax base” effect that will play a significant role in our subsequent analysis.

Second, there is an additional lump-sum component, which includes both the deficit shock as well

as any subsequent fiscal adjustment. The latter captures any tax hikes used, sooner or latter, to make

sure that government debt returns to steady state.12

The picture is completed by parameterizing the speed of fiscal adjustment. We consider two such

parameterizations, each serving a distinct purpose.

1. Baseline fiscal rule. Our baseline rule sets total taxes as follows:

Ti ,t = τy Yi ,t + T̄ −Et +τd
(
D t −D ss +Et

)
, (5)

where τy ∈ [0,1) is the time-invariant tax rate on income, the “intercept” T̄ is set to guarantee

budget balance at steady state, Et is a mean-zero and i.i.d. deficit shock (e.g., issuance of stim-

ulus checks), and τd ∈ (0,1) is a scalar that parameterizes the speed of fiscal adjustment. Intu-

itively, fiscal adjustment is arbitrarily fast for τd → 1− and arbitrarily slow for τd → 0+. Thanks

to our simplifying assumption that all households receive the same income, we can drop the i

index and rewrite (5), after (log-)linearization, as follows:

tt = τy yt︸︷︷︸
tax base effect

+ τd · (dt +εt )︸ ︷︷ ︸
fiscal adjustment

− εt︸︷︷︸
deficit shock

, (6)

where εt ≡ Et /Y ss is the deficit shock (conveniently rescaled), yt ≡ ln(Yt /Y ss) is the deviation of

output from steady state, and dt is the corresponding deviation of the real value of public debt.

2. Alternative fiscal rule. Our second rule is a time-dependent variant of (5). This rule sets, after

(log-)linearization,

ti ,t = tt =


τy yi ,t −ε0 t = 0

τy yi ,t t ∈ {1, · · · , H −1}

dt t ≥ H

, (7)

Note that this rule shuts down any deficit shocks at dates t ≥ 1, thus allowing us to focus cleanly

policies (and equilibria) that guarantee that, following any given shock, public debt converges eventually back to steady
state. Formally, we require that Et [limk→∞ dt+k ] = 0 for all t and all realizations of uncertainty.

12While our main analysis treats the required tax hikes as non-distortionary, we emphasize that this is only for the sake
of simplicity in exposition. As we demonstrate in Section 5.4, allowing the tax hikes to be distortionary has minimal impact
on our self-financing results.
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on impulse responses to a date-0 shock.13 The interpretation of the rule is as follows: following

the date-0 shock, the government abstains from any fiscal adjustment for the first H periods,

before then adjusting taxes from date H onwards to return government debt to steady state. We

can thus identify H as the lag between the initial deficit and the future adjustment.

Intuitively, we can capture a longer delay in fiscal adjustment either through a low τd (first rule) or

through a high H (second rule). This suggests that the two rules are interchangeable for our main

purposes—an intuition that turns out to be correct and that we will make precise in due course.

This high-level interchangeability notwithstanding, we like to study both fiscal rules, as each serves

different auxiliary purposes. On the one hand, the baseline rule (6) facilitates a tractable, recursive

characterization of the equilibrium (which we use for our main theoretical results), as well as a map-

ping between the theory and some relevant empirical work (which we use for our quantitative exer-

cises). Furthermore, (6) allows a sharp comparison to prior theoretical work.14 On the other hand, the

alternative rule (7) captures more transparently the timing of fiscal adjustment and thus allows us to

develop a sharper intuition for our limiting self-financing result. It also makes abundantly clear that

our fiscal policy is “Ricardian” or “passive” in the sense of the classical FTPL literature: (7) embeds

a commitment to raise taxes as needed to make sure that debt is back in steady state at t = H (and

thereafter), no matter what path the economy has followed up to that point, and no matter what path

it is expected to follow thereafter. We will return to this point in Section 4.5.

Monetary policy. The monetary authority sets the rate of interest on nominal bonds as

It = R ssEt

[
Πt+1
Πss

](
Yt

Y ss

)φ
, (8)

for some φ ∈ R. This is equivalent to saying that the monetary authority implements the following

relation between the (expected) real interest rate and real output:

rt =φyt . (9)

Monetary policy in our model is thus parameterized by the pro-cyclicality of the real interest rate.

Since deficits will be shown to be expansionary in equilibrium (provided that ω < 1, i.e., that Ricar-

dian equivalence fails), φ also parameterizes the comovement between real rates and deficits. We can

13See Wolf (2021a) for a discussion of the—conceptually simple but notationally involved—mapping from policy rules
in sequence space to their state-space analogues. Also, the disappearance of the term τy yi ,t in (7) for t ≥ H may suggest
that the tax distortion on labor supply also disappears at t ≥ H , which would complicate our upcoming NKPC by adding
a non-stochastic but time-varying cost-push term. We can abstract from this nuisance by setting individual taxes as ti ,t =
dt −τy yt +τy yi ,t for t ≥ H . Since yi ,t = yt , this immediately reduces to tt = dt for t ≥ H , in line with specification (7) above,
while also guaranteeing that the marginal tax rate faced by the individual household is time-invariant. It follows that our
upcoming NKPC remains the same as we move from our baseline policy rule (6) to the variant rule (7).

14In particular, (6) nests the fiscal rule found in Leeper (1991). As in that paper, the term τd · (dt + εt ) captures fiscal
adjustment: the variation in taxes induced by the exogenous deficit shock. The key novelty here is the inclusion of the
term τy yt , which captures the emphasized tax base channel.
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thus interpret φ< 0 as an “accommodative” monetary authority that, in response to a positive deficit

shock, lets real interest rates fall so as to increase fiscal space. Conversely, we can interpret φ > 0

as a “hawkish” or “fiscally conservative” monetary authority that leans against any boom (and any

inflation) triggered by deficits through rate hikes.

For our main analysis, we let monetary policy be “neutral” in the specific sense that φ = 0; that

is, the real rate is kept fixed throughout. This is the same baseline policy as in Woodford (2011) and

allows us to cleanly isolate how the interaction of fiscal policy and private spending shapes the scope

for fiscal deficit self-financing. We will relax this restriction in Section 5.3.15

3 Equilibrium

This section lays the groundwork for our self-financing result by characterizing the economy’s equi-

librium. We start by reducing the economy to a system of three equations: one for aggregate demand,

one for aggregate supply, and one for the dynamics of public debt. We then characterize the unique

bounded solution to this system. Throughout this section, we employ our baseline fiscal rule (6).

Derivations for the alternative rule (7) are slightly different and relegated to Appendix A.2, though the

economic essence is identical.

3.1 Aggregate demand

The consumption-savings problem of a household i is to choose sequences of consumption and asset

holdings to maximize (1) subject to (2). Using the simplifying property that all households receive the

same income (and pay the same taxes), we can express the (log-linearized) consumption function of

household i in period t as follows:

ci ,t =
(
1−βω)(

ãi ,t +Et

[ ∞∑
k=0

(
βω

)k (
yt+k − tt+k

)])
−γEt

[ ∞∑
k=0

(βω)k rt+k

]
, (10)

where ãi ,t denotes the household’s real financial wealth (inclusive of social fund payments) and γ ≡
σβω− (1−βω)β Ãss

P ss Y ss combines the intertemporal substitution and wealth effects of the real inter-

est rate. When ω = 1, (10) reduces to the consumption function of a standard permanent-income

household: future disposable income is discounted at rate β, and the marginal propensity to con-

sume (MPC) from both financial wealth and permanent income is 1−β. Relative to this benchmark,

ω < 1 maps to both more discounting of future disposable income (and hence of future taxes) and a

15One may also wonder how our specification of monetary policy relates to more standard Taylor rules, and how φ

matters for equilibrium determinacy. As we make clear in due course (Section 5.3), the answers to both of these questions
are of little consequence for the lessons of our paper.
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higher MPC. It is by now well understood how these qualitative properties extend to richer, more re-

alistic, HANK-type models (e.g., see Auclert, Rognlie and Straub, 2018; Farhi and Werning, 2019; Wolf,

2021a); as will become clear in due course, our results are driven by these more general qualitative

properties of consumer demand, and not by the specific micro-foundations behind them.

Under our baseline monetary policy, rt = 0 for all t , so the last term in (10) drops out. Aggregating

across households, and using the fact that aggregate private financial wealth equals total government

debt, we reach the following description of aggregate consumption:

ct =
(
1−βω)

dt +
(
1−βω)

Et

[ ∞∑
k=0

(
βω

)k (
yt+k − tt+k

)]
. (11)

Next, using (6) to express future taxes as functions of the current public debt and future output, and

replacing ct with yt (market clearing), we arrive at the following representation of aggregate demand:

yt =F1 · (dt +εt )+F2 ·Et

[(
1−βω) ∞∑

k=0

(
βω

)k yt+k

]
, (12)

where F1 ≡ (1−βω)(1−ω)(1−τd )
1−ω(1−τd ) and F2 = 1− (1−ω)τy

1−ω(1−τd ) . (12) is a key equation of this paper. The first term

captures the direct or partial equilibrium effect of fiscal deficits on aggregate demand. We see that

F1 > 0 (i.e., deficits enter positively in aggregate demand) if and only if ω < 1 (no Ricardian equiva-

lence) and τd < 1 (no immediate financing). Intuitively, τd < 1 means that deficits today are financed

at least in part with taxes in the future; as long as ω< 1, this means that a deficit today translates to a

positive real transfer from future cohorts to current cohorts, thus increasing aggregate demand. The

second term then captures the general equilibrium feedback between aggregate demand and aggre-

gate income—the “intertemporal Keynesian cross.” Note in particular that F2 measures the “slope”

of this Keynesian cross, in the following particular sense: if we raise expectations of future spending

in all periods by 1, then current spending increases by F2.16

Finally, consider how equation (12) specializes for ω= 1. In this case, F1 = 0, F2 = 1, and (12) col-

lapses to yt = Et
[
(1−β)

∑∞
k=0β

k yt+k
]

, which in turn can be rewritten in recursive form as yt = Et [yt+1].

This makes clear two points. First, that our aggregate demand equation is a natural extension of its

RANK-PIH counterpart, namely the Euler equation of a representative, infinitely-lived, financially un-

constrained consumer. And second, that debt and taxes enter this equation because and only because

we have departed from PIH consumer behavior.

16Also note that F2 = 1 when ω= 1 or τy = 0, but F2 < 1 as soon as ω< 1 and τy > 0. The combination of finite lives (or
liquidity constrains) and proportional taxes thus attenuates the Keynesian feedback. This helps explain why our economy
features a unique bounded equilibrium, as we discuss below and further in Appendix A.3.
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3.2 Aggregate supply

By design, the aggregate supply side of our model is exactly the same as its familiar RANK counterpart.

In particular, labor supply is given by
1

ϕ
ℓt = wt − 1

σ
ct . (13)

Together with market clearing (ct = yt ) and technology (yt = ℓt ), this pins down the real wage as

wt = ξyt , where ξ≡ 1
ϕ
+ 1
σ
> 0. Firm optimality, on the other hand, pins down the optimal reset price a

function of current and future real marginal costs. Following standard steps, we can then reduce the

supply-side of the economy to the familiar NKPC:

πt = κyt +βEt [πt+1] . (14)

where κ≥ 0 depends on ξ (the pro-cyclicality of real marginal costs) and θ (the Calvo reset probabil-

ity). Since there is a one-to-one mapping between κ and θ, and since this mapping is invariant to both

fiscal and monetary policy, we henceforth treatκ as an exogenous parameter and (re)parameterize the

degree of price flexibility by it.

3.3 Law of motion for public debt

The remaining third equilibrium restriction comes from combining the government’s flow budget

constraint with the fiscal rule (6). This yields the following law of motion for public debt:

dt+1 =β−1(dt +εt − τd · (dt +εt )︸ ︷︷ ︸
fiscal adjustment

− τy yt︸︷︷︸
tax base

)− D ss

Y ss (πt+1 −Et [πt+1])︸ ︷︷ ︸
debt erosion

. (15)

with initial condition17

d0 =−D ss

Y ss
π0. (16)

Finally, recall that the sequence of government flow budget constraints must be complemented with

the usual no-Ponzi restriction limk→∞Et
[
βk dt+k

]= 0.

3.4 Equilibrium definition and characterization

A standard equilibrium definition combines (i) individual optimality for consumers, (ii) individual

optimality for firms, (iii) market clearing, and (iv) budget balance for the government (together with

the no-Ponzi constraint). The preceding analysis has log-linearized the model and has reduced the

first three requirements to equations (12) and (14), and the last requirement to equation (15). These

17Note that d0 = 1
P ss b0 − D ss

Y ss (π0 −E−1[π0]). Since we start in steady state (i.e., b0 = E−1[π0] = 0), we recover (16).
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equations, like the log-linearization itself, make sense only insofar the economy remains in a neigh-

borhood of the steady state. Accordingly, our notion of equilibrium is as follows.

Definition 1. An equilibrium is a stochastic path {yt ,πt ,dt }∞t=0 for output, inflation, and the real value

of public debt that is bounded in the sense of Blanchard and Kahn (1980) and that satisfies aggregate

demand (12), aggregate supply (14), and the law of motion for public debt (15), along with the initial

condition (16) and the no-Ponzi game condition Et
[
limk→∞βk dt+k

]= 0.

We can now state our first main result.

Proposition 1. Suppose thatω< 1 and τy > 0. There exists a unique (bounded) equilibrium. Along this

equilibrium, real output and real public debt satisfy

yt =χ (dt +εt ) and Et [dt+1] = ρd (dt +εt ) , (17)

for some χ> 0 and ρd ∈ (0,1). These coefficients solve the following fixed point problem:

χ= F1

1−F2
1−βω

1−βωρd

and ρd =β−1 (
1−τd −τyχ

)
. (18)

Finally, inflation satisfies πt = κ
1−βρd

yt .

Condition (17) contains two relations. The first relation expresses the equilibrium level of output

as a proportion χ of the private sector’s real financial wealth (which itself equals dt ) and of the fiscal

transfer (the deficit shock εt ). Note that χ> 0—i.e., deficits trigger booms. As emphasized previously,

this is so because of the two key features of our model environment: the failure of Ricardian equiva-

lence, which lets deficits stimulate aggregate demand; and the nominal rigidity, which lets aggregate

demand drive output. The second relation gives the (expected) evolution of the real value of public

debt, with ρd measuring the (expected) persistence of debt. But since yt is proportional to dt , we see

that ρd here also measures the expected persistence of the Keynesian boom triggered by deficits.

Condition (18) summarizes the fixed-point relation between χ and ρd —i.e., the two-way feedback

between aggregate demand and fiscal conditions. On the one hand, as long as τy > 0, higher aggregate

demand contributes to higher output, higher tax revenue and thereby to lower public debt tomorrow.

This feedback is reflected in the second part of condition (18), which pins down ρd as a function of

χ and of the two fiscal policy parameters (τd ,τy ). On the other hand, as long as ω< 1, more delay in

fiscal adjustment, or more persistence in public debt, will translate to a larger effective transfer from

generations in the far future to generations in the present and the near future, thus stimulating ag-

gregate demand both directly (the partial equilibrium effect) and indirectly (the general equilibrium

Keynesian cross). This is reflected in the first part of condition (18), which pins down χ as a function

of ρd and of the relevant aggregate-demand parameters (F1,F2,βω). We emphasize that the feedback
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from deficits to aggregate demand is present only when ω< 1, while the feedback from aggregate de-

mand to tax revenue and thereby to public debt dynamics is present only when τy > 0. The textbook

model assumes away both feedbacks. We return to this point at the end of Section 4 and also in Ap-

pendix A.3, where we explain the conceptual differences between our analysis and the classical FTPL.

For now, we wish to emphasize that the aforementioned two-way feedback is responsible both for the

uniqueness of the equilibrium and for our upcoming self-financing results.18

We close this section with an important remark about the role of inflation. While Proposition 1 ap-

plies regardless of κ, there is a subtle difference as we move from κ= 0 to κ> 0. When prices are rigid,

dt is predetermined in the beginning of period t , and so the second part of (17) holds state-by-state,

and not just in expectation. When instead prices can move, then dt is no longer predetermined—it

depends on the concurrent innovation in the price level, which itself depends on the concurrent in-

novation in εt . This is the inflation surprise term in equation (15). Proposition 1 can then be read as

saying that, in general, date-0 inflation rescales the initial real debt burden d0, but otherwise has no

further effect on the dynamic shape of the output, tax, and debt impulse responses. In fact, this sep-

aration between “scale and dynamics” extends to an arbitrary Phillips curve: the latter’s specification

influences the equilibrium mapping of the innovations in εt to innovations in dt +εt , but it does not

change at all the dynamic two-way feedback between real private wealth (also, real government debt)

and real economic activity characterized in Proposition 1. This observation not only explains why our

upcoming self-financing result is robust to the value of κ or the specification of the NKPC, but will also

be important for some of the further extensions that we consider in Section 5. All in all, Proposition 1

and the two-way feedback encapsulated in it hold the key to the rest of our analysis.

4 Self-financing of fiscal deficits

This section presents our headline result on the possibility of self-financing deficits. We first use the

intertemporal government budget constraint to provide a quantitative measure of the degree of self-

financing. We then show that complete self-financing is possible in the limit as fiscal adjustment is

delayed further and further (in the sense of τd → 0 or H →∞), and we explain the economics behind

this result. Finally, we zero in on the roles played by our environment’s three other key parameters (κ,

τy , and ω) and we contrast the economics behind our result to those behind the FTPL.

18Under the alternative rule (7), instead, uniqueness requires one of the following minor modifications: (i) a strength-
ening of the notion of boundedness to limk→∞Et

[
yt+k

] = 0, which amounts to saying that expectations “at infinity” are
anchored to the steady state; or (ii) the reinterpretation of φ = 0 as the limit of φ→ 0 from above, which is basically a
(limit) Taylor principle. The sole role of either one of these modifications is to remove a class of sunspot equilibria that are
inherited from the standard New Keynesian model. See Appendix A.2 for details.
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4.1 Sources of fiscal financing

Iterating the debt relations (15) and (16) forward and using limt→∞E0
[
βt dt

]= 0 (since ρd ∈ (0,1)), we

obtain the following present-value restriction on fiscal policy:

ε0︸︷︷︸
deficit

= τd

(
ε0 +

∞∑
k=0

βkE0 [dk ]

)
︸ ︷︷ ︸

fiscal adjustment

+
∞∑

k=0
τyβ

kE0
[

yk
]

︸ ︷︷ ︸
self-financing via tax base

+ D ss

Y ss (π0 −E−1 [π0])︸ ︷︷ ︸
self-financing via debt erosion

. (19)

The left-hand side of (19) is the exogenous shock in the initial deficit, while the right-hand side con-

tains the three ways in which this shock will be financed over time: the first term captures the ad-

justment in current and future taxes triggered by the shock and any resulting accumulation of public

debt; the second term collects the present value of the extra tax revenue generated by the deficit-

driven boom in real economic activity; and the third term gives the erosion in the real debt burden

caused by the associated innovation in inflation. Put differently, the first term captures the conven-

tional notion of fiscal adjustment—the government actively adjusts its primary surplus to stabilize

its debt—while the second and third terms reflect our two sources of self-financing. Finally, we note

that a fourth source of financing—monetary accommodation—emerges if the monetary authority de-

presses real rates in response to deficits. In our main analysis, the assumption that φ= 0 means that

this channel is not operative.

We can now define the (overall) degree of self-financing as follows:

Definition 2. The degree of self-financing is the fraction of the initial deficit that is financed by an

expansion in the tax base and/or an erosion in the real debt burden:

ν≡
∑∞

k=0τyβ
kE0

[
yk

]+ D ss

Y ss π0

ε0
(20)

This definition applies regardless of whether fiscal policy obeys the baseline rule (6) or the variant rule

(7). Note next that the overall degree of self-financing can be decomposed into its two components:

ν≡ νy +νp

where

νy ≡ 1

ε0
τy

∞∑
k=0

βkE0
[

yk
]

and νp ≡ 1

ε0

D ss

Y ss
π0 (21)

measure, respectively, the tax-base and debt-erosion components of self-financing. Finally, because

the NKPC implies that π0 = κ∑∞
k=0β

kE0
[

yk
]
, it is immediate that

νp = κD ss

Y ss

τy
νy . (22)

This relation suggests that once we understand the two-way feedback between real economic activity
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and fiscal deficits in the rigid-price benchmark (κ= 0), it will be straightforward to extend the analysis

to the general case (κ> 0). In the rest of this section we therefore proceed as follows: we first state our

headline result for the general case; we next expand on the economics behind it under the special

case of κ= 0 (rigid prices); and we finally discuss the role of letting κ> 0.

Before proceeding to our main results we close with a brief remark on our two fiscal policy specifi-

cations (6) and (7). As anticipated in Section 2.3, these two specifications are indeed equivalent ways

of thinking about the effects of delays in fiscal adjustment.

Lemma 1. Suppose that ω < 1 and τy > 0. There exists a strictly decreasing mapping T : N→ (0,1],

with limH→∞T (H) = 0, such that the degree of self-financing generated by policy (7) is the same as that

generated by policy (6) if and only if τd =T (H).

Importantly, this result establishes that “infinite financing delay” in the sense of H →∞ under the

rule (7) maps to τd → 0 under the rule (6), and vice versa.

4.2 The self-financing result

We can now state our main theoretical result on the possibility of self-financing.

Theorem 1. Suppose thatω< 1 and τy > 0, and let fiscal policy follow either our baseline rule (6) or the

variant rule (7). The equilibrium degree of self-financing, ν, has the following properties:

1. It is increasing in the delay of fiscal adjustment; i.e., ν is decreasing in τd for the fiscal rule (6) and

increasing in H for the fiscal rule (7)).

2. It converges to 1 as fiscal adjustment is delayed further and further; i.e., ν → 1 (from below)

as τd → 0 (from above) or as H → ∞. Furthermore, these two limits induce the same equilib-

rium paths
{

yt ,πt ,dt
}∞

t=0, and in this common limit self-financing is sufficiently strong to re-

turn real government debt to steady state (i.e., limk→∞Et [dt+k ] → 0 for the baseline rule (6) and

limH→∞E0 [dH ] → 0 for the variant rule (7)).

Theorem 1 is our core result. Its main implication is that the failure of Ricardian equivalence—

here encapsulated in ω < 1—opens the door for fiscal deficits to finance themselves. First, as fiscal

adjustment is delayed, the initial fiscal deficit induces both a larger and more persistent Keynesian

boom, thus increasing the share of self-financing through higher tax revenue and a larger date-0 price

level jump. Second, the limit as τd → 0 or H →∞ is one of complete self-financing: the deficit-driven

boom is large and fast enough to cover the cost of the initial fiscal outlay ε0 and to make sure that

public debt automatically returns back to steady state, without any fiscal adjustment.
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BASELINE FISCAL POLICY

ALTERNATIVE FISCAL POLICY

Figure 1: Top panel: impulse responses of output yt , government debt dt , and the self-financing share
ν to the deficit shock ε0 as a function of τd . Bottom panel: same as above, but as a function of H .
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A visual illustration. We provide a visual illustration of Theorem 1 in Figure 1.19 The figure shows the

effects of a deficit shock ε0 under different assumptions about fiscal adjustment. The left and middle

panels in the top half of the figure begin by showing impulse responses of output yt and government

debt dt as a function of the fiscal adjustment parameter τd in our baseline fiscal rule (6). Consistently

with Theorem 1, we see that smaller fiscal response coefficients correspond to larger impact output

booms (i.e., larger χ) and more persistent deviations of output and government debt from steady state

(i.e., larger ρd ). This boom then contributes to financing of the initial deficit ε0 through our two self-

financing channels: a tax base expansion and a jump in the date-0 price level. The top right panel

of the figure then reports this degree of self-financing ν—as well as the split into νy and νp —as a

function of the fiscal adjustment parameter τd . We see that ν is decreasing in the strength of fiscal

adjustment τd , i.e., increasing in the delay of fiscal adjustment. In particular, as τd declines towards

zero, the degree of self-financing converges to one.

The bottom half of Figure 1 provides a different perspective on the same logic, using instead the

alternative fiscal rule (7), in which taxes adjust after some (finite) horizon H to perfectly balance the

budget. We see again that ν is increasing in the delay of fiscal adjustment, and in particular again

converges to one as fiscal adjustment is delayed further and further (H →+∞). This not only offers a

complementary interpretation of what “delay” means, but also proves the following important point:

our self-financing result is consistent with fiscal policy being “Ricardian” or “passive” in the strong

sense that it commits on bringing debt back to steady state at t = H +1 regardless of the path that the

economy has taken up to that point.

4.3 The economics behind the self-financing result

To understand the economics behind Theorem 1 as transparently as possible, we in this subsection

restrict attention to the special case of fully rigid prices (i.e., we set κ= 0). Based on the discussion at

the end of Section 3, shifting from this rigid-price case to the general sticky-price case will be straight-

forward, only requiring us to re-scale all impulse responses without changing their shape. We also

focus on the fiscal “H-rule” (7). As anticipated before, this fiscal rule is pedagogically useful because

it makes clear both what we mean by delay in fiscal adjustment and why our results are consistent

with fiscal policy being “passive” or “Ricardian” in the sense of FTPL literature.

The policy experiment studied in the remainder of this section is thus as follows: the fiscal author-

ity pays out a lump-sum transfer to households at date 0 and promises to hike taxes at date H in order

19We only emphasize qualitative features of our results here, so we do not in detail discuss the model parameterization;
it suffices to note that we set ω= 0.75—a meaningful departure from Ricardian equivalence—and κ= 0.1—a rather steep
NKPC, allowing a clean visual illustration of our two sources of self-financing. A more serious quantitative investigation is
relegated to Section 6.
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to return debt to its steady-state value at date H +1. The questions of interest are how this policy af-

fects equilibrium outcomes, how large the required tax hike at H turns out to be, and what happens as

we increase H . We address these questions in two steps. First, to build intuition, we analyze a simple

two-period example. Second, we show how the intuition from this simple, essentially static example

sheds light on the workings of our full dynamic economy.

A simple static example. We consider a two-period economy in which the government pays out a

transfer ε to households at t = 0, generates automatic tax revenue τy for every dollar of output, and

taxes households to return debt to trend at t = 1 (as necessary). Prices are fully rigid, so output at t = 0

is fully demand-determined. We assume that consumer demand in period 0 is given as

c = MPC · ydisp

where MPC ∈ (0,1) is the marginal propensity to consume and

ydisp = (1−τy )y +ε

is disposable income. We note that this set-up embeds a myopia assumption: date-0 consumption is

invariant to date-1 outcomes, thus allowing us to characterize the date-0 equilibrium without refer-

ence to what happens later. By imposing market clearing (y = c), we immediately see that the date-0

equilibrium level of income is given by

y = MPC

1− (1−τy )MPC
×ε (23)

This equation is just the solution of the familiar, static Keynesian cross: MPC is the partial equilibrium

effect of a unit transfer; (1−τy )MPC is the slope of the Keynesian cross; and 1
1−(1−τy )MPC is the general

equilibrium multiplier.

Consider now the government’s budget constraint. Since the government hands out the transfer

ε and collects taxes τy y, the net deficit at the end of date 0 is ε− τy y. The amount of public debt

inherited at date 1 is thus given by

debt tomorrow = R(ε−τy y), (24)

where R is the real interest rate between the two periods. Plugging (23) into (24), we conclude that

debt tomorrow = R(1−ν)ε

where

ν≡ τy y

ε
= τy MPC

1− (1−τy )MPC
(25)

is the degree of self-financing.

Equation (25) reveals two important insights. First, we see that a higher MPC maps both to a larger
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partial equilibrium effect (numerator) and to a higher general equilibrium multiplier (denominator),

and therefore overall to a larger degree of self-financing ν. Second, in the limit as MPC → 1, the partial

equilibrium effect converges to 1, the multiplier converges to 1
τy

, and ν converges to 1—i.e., there is

complete self-financing.

Back to the full model. To what extent is the simple, effectively static, example offered above in-

formative about what is actually going on in our full dynamic economy? Note that complete self-

financing (ν→ 1) in the static model relies on two key properties: first, that the expected date-1 tax

hike does not affect date-0 spending behavior; and second, that the date-0 transfer as well as all the

additional income it generates are fully spent at date 0 (MPC → 1), thus generating enough tax rev-

enue to stabilize debt before the promised date-1 tax hike. The core intuition is that, as the financing

delay H increases, our dynamic economy starts to emulate those two features of the static example.

To see why this is so, we begin by highlighting two important properties of our economy’s aggre-

gate consumption function. Formal details are provided in Lemma D.1 in Appendix D.

1. Discounting. Consider first how consumption demand at date t ≥ 0 responds to an anticipated

future change in disposable income at some future date t +ℓ, with ℓ≥ 0. We write this response

as Mt ,t+ℓ—the (t , t +ℓ) element of the matrix of intertemporal MPCs studied by Auclert, Rognlie

and Straub (2018). It is straightforward to see that β−ℓMt ,t+ℓ = (1−β) in the PIH benchmark

(ω = 1). With finite horizons (ω < 1), on the other hand, it can be shown that β−ℓMt ,t+ℓ is

strictly decreasing in ℓ, and in particular that

lim
ℓ→∞

β−ℓMt ,t+ℓ = 0.

In words, as long asω< 1, an income change of a fixed present value that occurs further and fur-

ther into the future has a diminishing and eventually vanishing effect on current consumption.

We refer to this property of aggregate demand as “discounting.”

2. Front-loading. Consider next how changes in disposable income at date t ≥ 0 affect consump-

tion demand at some future date-t+ℓ, with ℓ≥ 0. We write this response as Mt+ℓ,t —the (t +ℓ, t )

element of the intertemporal MPC matrix. In the PIH benchmark, we have that Mt+ℓ,t is invari-

ant to ℓ, and in particular that Mt+ℓ,tβ
−t = (1−β), reflecting perfect consumption smoothing.

With finite horizons, we instead have that Mt+ℓ,t is decreasing in ℓ, with

lim
ℓ→∞

Mt+ℓ,t = 0.

In words, consumers tend to spend any income receipt faster than in the PIH benchmark, and

any income shock today has a vanishing effect on consumption far in enough in the future. We

refer to this property as “front-loading”.
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Figure 2: Direct, partial equilibrium demand effect (blue) and full general equilibrium output impulse
response (grey) to a date-0 deficit shock with fiscal financing at date H = 70.

These two properties of the aggregate consumption function allow us to connect our full dynamic

economy with the simple two-period example; a visual illustration to accompany the following dis-

cussion is furthermore provided in Figure 2.

The first object shown in the figure (in blue) is what we refer to as the “partial equilibrium” ef-

fect of the policy. It captures the following thought experiment: Suppose the government pays out

a transfer of size 1 at date 0, but then counterfactually assume that aggregate output and inflation

were to not move in response to that policy. Then, debt would grow at rate R ss = β−1 all the way up

until date H , when the government hikes taxes to stabilize government debt. The blue line gives the

response of consumption demand to this combination of date-0 transfer and date-H tax hike.20 The

discounting and front-loading properties allow us to understand the shape of this partial equilibrium

effect. By “discounting”, the date-0 cohort is essentially unaffected by the future announced tax hike;

by “front-loading”, it spends its lump-sum transfer receipt relatively quickly, with the cumulative MPC

approaching 1 faster than in the PIH benchmark. The cohorts born shortly after date-0 are also es-

sentially unaffected by the future tax hike, so overall spending demand is back to trend after around

20 periods. It is only around t = 60 that expectations of the future tax hike at H = 70 start to depress

demand. Our dynamic economy thus echoes the static example: the future tax hike does not affect

20Mathematically, the blue line plots M · ttt PE , where M is the full matrix of intertemporal MPCs and ttt PE is the “partial
equilibrium” tax-and-transfer vector, which equals −1 at date 0, β−H at date H , and 0 otherwise.
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“short-run” spending behavior, and the “short-run” cumulative MPC approaches 1. The key is to in-

terpret the “short run” as an interval of time that is long enough but also sufficiently distant from the

tax hike; in the figure, this corresponds to, roughly, the first 20 quarters.

The second object shown in the figure (in grey) is the full general equilibrium effect of our policy

experiment—the object we formally characterized in Theorem 1. In general equilibrium, since prices

are rigid, the initial increase in consumer demand generates additional income. Importantly, again

by the front-loading property of consumer demand, this income is spent quickly. Since the cumu-

lative short-run MPC is 1, this delivers a front-loaded Keynesian multiplier of size 1
τy

. Crucially, this

Keynesian boom increases tax revenue (in date-0 present value terms) by τy × 1
τy

= 1, thus returning

government debt to trend far before date H (or “the long-run”). As a result, the promised subsequent

tax hike at H—together with its negative effect on spending—vanishes, yet again echoing what hap-

pens as MPC → 1 in the simple example above.

While the above discussion focused on the limit as H →∞, the underlying intuition also readily

connects with the monotonicity of ν in H . As H is increased, the effect of the anticipated tax hike

on short-run demand decreases, thereby strengthening the initial partial equilibrium demand boom.

Similarly, the larger H , the longer the general equilibrium feedback—i.e., the Keynesian cross—can

play out before being moderated by the future tax hike. The size of the short-run boom thus is in-

creasing in H , and by extension so is the endogenously raised tax revenue. Finally, we note that the

exact same logic also explains why the equilibrium boom becomes larger and more persistent for

smaller τd under our baseline fiscal rule (6). Either way, as fiscal adjustment is delayed further and

further, the short-run Keynesian boom on its own becomes big enough to stabilize debt.

A comment on generality. We emphasize that the intuitions offered above transcend the particular

OLG economy that underlies Theorem 1 and our graphical illustration in Figure 1. We will later make

this claim precise in Section 5.1, where we generalize our self-financing result to much richer aggre-

gate demand structures. This generalization will identify sufficient conditions that—in line with the

intuition offered above—ensure (i) deficits inducing in partial equilibrium a positive and front-loaded

response in aggregate demand, and (ii) this translating in general equilibrium to a boom in real eco-

nomic activity that is both large enough and fast enough to raise the required tax revenue prior to the

promised future tax hike.

4.4 The roles of κ, τy , andω

So far we have focused on how ν depends on the delay in fiscal adjustment (τd or H). We now study

how ν changes with our model’s three other key parameters: the degree of price flexibility (κ), the

feedback from aggregate income to tax revenue (τy ), and the proximity to PIH behavior (ω).
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The degree of price flexibility. The intuition offered in the previous subsection considered the spe-

cial case of κ= 0 (rigid prices), but extends with little change to κ> 0. In this general case, the Keyne-

sian boom brings with it inflation, reducing the real value of public debt. Relative to the rigid-price

case, this only increases the potency of self-financing. Furthermore, since the innovation in inflation

is—via the NKPC—proportional to the innovation in the present discounted value of aggregate in-

come, we can readily compute the relative importance of the two sources of self-financing, as shown

in equation (22). Putting everything together, we have the following result.

Proposition 2. Let ω< 1, τy > 0, κ> 0 and D ss

Y ss > 0, and consider either of our two fiscal policies.

1. The overall degree of self-financing, ν, increases with the degree of price flexibility κ, and the

steady-state debt-to-GDP ratio, D ss

Y ss .

2. The contribution of the inflation/debt erosion channel, νp /ν, is increasing in κ and D ss

Y ss .

The more flexible are prices, the larger the share of self-financing that comes via prices rather than

quantities. In particular, as κ→∞, all self-financing comes through the date-0 jump in prices.

The strength of the tax base channel. Let us now zero in on the role of τy , starting with the case of

rigid prices (κ= 0) and focusing on the tax base channel. In principle, τy has two offsetting effects on

ν: first, mechanically, a larger τy means more tax revenue for any given boom; second, by weakening

the intertemporal Keynesian cross (see (12) and (18)), a larger τy decreases the size and persistence of

the boom. The next result verifies that the first effect dominates.

Proposition 3. Let ω < 1, τy > 0, and κ = 0, and consider either of our two fiscal policies. The overall

degree of self-financing, ν, increases with τy .

When κ > 0, a third effect enters the picture: the aforementioned dampening of the real boom

also dampens the inflation response, thus weakening the debt erosion channel. When κ and/or D ss

Y ss

are large enough, this effect may dominate. Quantitatively, however, this is never the case in the neigh-

borhood of the model parameterization that we will consider in Section 6.

Distance from PIH. Finally, consider the importance of the deviation from permanent-income con-

sumption behavior (i.e., ω < 1). For this purpose, we find it convenient to focus on our main fiscal

policy specification (6)—a specification that allows us to summarize the persistence of government

debt in the single coefficient ρd .

Proposition 4. Let ω< 1 and τy > 0 and consider the fiscal policy (6).

1. For any τd > 0, a lowerω raisesν and decreasesρd ; that is, a larger departure from the permanent-

income benchmark yields both larger and faster self-financing.
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Figure 3: Impulse responses of output yt , government debt dt , and the total self-financing share ν to
the deficit shock ε0 as a function of H in an economy with near-PIH consumers (i.e., ω close to 1).

2. Let ρfull
d be the limit of ρd , the persistence of government debt and output, as τd → 0. Then,

ρ
full
d < 1 for any ω< 1 but ρfull

d → 1 as ω→ 1.

The first part of Proposition 4 is straightforward: for any given finite delay in fiscal adjustment (i.e.,

for any given τd > 0), a larger departure from the PIH benchmark (i.e., a smaller ω) implies a larger

and quicker Keynesian boom, thus increasing ν and decreasing ρd . The second part then zeroes in

on how the magnitude of this departure matters for the limit of an infinite delay in fiscal adjustment

(i.e., τd → 0). Provided thatω< 1, we can always achieve complete self-financing by pushing the fiscal

adjustment sufficiently far in the future. However, the closerω is to 1, the smaller and less front-loaded

the resulting Keynesian boom is, and hence the longer it takes for public debt to return to steady state.

Figure 3 provides a visual illustration of this point. Consistent with Theorem 1, the self-financing

limit still exists: ν→ 1 as τd → 0. However, convergence to this limit is exceedingly slow: ν remains

very close to 0 for all values of τd other than those in a small neighborhood of 0. This in turn suggests

that the practical relevance of Theorem 1 critically depends on how far real-world consumer behavior

is from the PIH. We tackle this question in Section 6.

4.5 Relation to the FTPL

We now zero in on the difference between our results and the Fiscal Theory of the Price Level (FTPL),

which itself is built upon the PIH benchmark (i.e.,ω= 1). In this benchmark, and therefore also in the
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FTPL, aggregate demand reduces to

ct = Et

[
(1−β)

∞∑
k=0

βk yt+k

]
.

Ricardian equivalence thus holds in the following partial equilibrium sense: holding constant the

expected path of aggregate income, optimal individual spending is invariant to fiscal policy. However,

Ricardian equivalence could still fail in general equilibrium, due to a “self-fulfilling prophesy.” To see

what we mean by this, combine the above aggregate demand relation with output market-clearing to

obtain:

yt = Et

[
(1−β)

∞∑
k=0

βk yt+k

]
,

or equivalently yt = Et [yt+1]. It is immediate that this equation admits a continuum of bounded so-

lutions. One solution of special interest is yt = 0 for all t and all histories. This solution, which guar-

antees that Ricardian equivalence extends from partial equilibrium to general equilibrium, is known

as the fundamental or minimum state variable (MSV) solution; it is the one selected by the Taylor

principle; and it is also the limit of our economy’s unique equilibrium as ω→ 1 from below. But when

ω is exactly 1, and when in addition the Taylor principle is violated, uniqueness is lost: consumers

can coordinate on multiple self-fulfilling levels of aggregate spending, and fiscal policy can be used as

a coordinating device. This is the crux of how the FTPL allows deficits to drive output and inflation,

despite the fact that they do not enter into either aggregate demand or aggregate supply.

The plausibility of this mechanism has long been questioned. Inter alia, Kocherlakota and Phe-

lan (1999) and Buiter (2002) have argued that the FTPL boils down to a threat by the fiscal authority

to “blow up” its budget unless consumers coordinate on a very specific self-fulfilling solution. More

recently, Angeletos and Lian (2023) have shown that all such solutions can be ruled out by small per-

turbations of social memory. These points notwithstanding, the controversies surrounding the FTPL

are outside the scope of our paper. Instead, the purpose of the above discussion is to clarify the differ-

ence between our paper and the FTPL: our self-financing mechanism derives exclusively from a partial

equilibrium failure of Ricardian equivalence, and not from any kind of self-fulfilling prophesy.21

5 Extensions

This section discusses several extensions of our headline self-financing result, the first two general-

izing the model and the last three considering alternative specifications of fiscal and monetary pol-

icy. First, we consider a reduced-form aggregate demand relation that nests—but also goes materi-

ally beyond—our baseline OLG environment. Second, we discuss an extension featuring investment.

21We further elaborate on these ideas and on the characterization of the ω= 1 benchmark in Appendix A.3.
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Third, we relax our assumption of a “neutral” monetary policy. Fourth, in Section 5.4 we allow for fis-

cal adjustment to be distortionary. Finally, we show that our results extend with little change to fiscal

stimulus in the form of government purchases rather than lump-sum transfers.

5.1 A more general aggregate demand structure

Extending our self-financing result to a more general aggregate demand relation allows us to: shed

further light on the economics of our result; understand better the kind of environments that allow

(or do not allow) for meaningful self-financing; and build a bridge to state-of-the-art HANK models.

Generalizing the demand block. Recall that, in our baseline OLG environment, aggregate consumer

demand was given by the following function of current household wealth as well as current and future

income net of taxes:

ct =
(
1−βω)(

dt +Et

[ ∞∑
k=0

(
βω

)k (
yt+k − tt+k

)])
. (26)

This form of the aggregate demand relation embeds economically meaningful restrictions on con-

sumer behavior: the MPC out of current income and wealth is the same (equal to 1−βω), and the

MPCs out of the discounted presented value of future disposable income decline at a constant rate

ω. We consider a generalized aggregate demand relationship that relaxes these constraints while pre-

serving tractability:

ct = Md ·dt +My ·
((

yt − tt
)+δ ·Et

[ ∞∑
k=1

(
βω

)k (
yt+k − tt+k

)])
. (27)

Equation (27) generalizes (26) in three meaningful ways. First, it allows for different MPCs out of

current income and wealth, denoted respectively by My ∈ (0,1) and Md ∈ (0,1), and where we will

assume that Md ≤ My . Second, it disentangles the geometric discounting rate ω from the contem-

poraneous MPCs (now My and Md instead of 1−βω). And third, it additionally allows for constant

discounting at rate δ ∈ [0,1]. We will elaborate on the economics of these relaxations and give exam-

ples of several familiar models that can be nested in this structure.

A general sufficient condition for self-financing. We now revisit our self-financing result with the

generalized demand relation (27) replacing our simpler baseline OLG demand block. It turns out

that self-financing obtains under two key restrictions on (27), echoing the “discounting” and “front-

loading” properties highlighted previously.

Assumption 1. The aggregate consumption function features positive geometric discounting: ω< 1.

In words, MPCs out of future disposable income relative to MPCs out of current income and wealth

decline strictly faster than the rate of interest β. Consistent with our discussion in Section 4.3, this is
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sufficient to ensure that far-ahead future tax hikes—i.e., tomorrow’s tax hike in the analogy in Section

4.3—have vanishingly small effects on current aggregate demand, similar to the baseline OLG model.

The fiscal deficit shock will thus lead to a demand boom around date 0.

Assumption 2. Intertemporal MPCs are sufficiently front-loaded in the particular sense that

Md + 1−β
τy

(
1−τy

)
My

(
1+δ

∞∑
k=1

(
βω

)k

)
> 1−β

τy
. (28)

For (28) to hold for all τy ∈ (0,1], the sufficient and necessary condition is

Md > 1−β and My

(
1+δ βω

1−βω
)
≥ 1. (29)

(28) is the condition required to ensure that the persistence of government debt ρd in the limiting

full self-financing equilibrium is strictly less than 1—i.e., that government debt will return to trend

even as the future tax hike becomes vanishingly small. Intuitively, this requires the general equilib-

rium Keynesian boom to be sufficiently front-loaded, which in turn requires households to spend any

income gains sufficiently quickly. If MPCs out of income and wealth are large enough—in the precise

sense of (29) or (28)—then household spending is indeed sufficiently fast.22

Together, Assumptions 1 and 2 suffice to generalize our self-financing result.

Theorem 2. Suppose that aggregate demand takes the generalized form (27) and that Assumptions 1

and 2 hold. As τd → 0 (from above) or as H →∞, there exists a unique bounded equilibrium, and it is

such that

ν→ 1 (from below).

That is, complete self-financing obtains as fiscal adjustment is indefinitely delayed. Moreover, self-

financing is sufficiently strong to return real government debt to steady state (i.e., limk→∞Et [dt+k ] → 0

for the baseline rule (6) and limH→∞E0 [dH ] → 0 for the variant rule (7)).

Theorem 2 together with its underlying assumptions exactly echoes our intuitive discussion of-

fered in Section 4.3. First, Assumption 1 guarantees that the future tax hike is discounted, so deficits

will lead to a short-run boom. Second, Assumption 2 ensures that any additional income—both

the initial transfer as well as all higher-order general equilibrium income gains—is spent sufficiently

quickly to deliver a front-loaded boom that raises the required tax revenue before the promised fu-

ture tax hike becomes necessary. In the remainder of this section we will discuss examples of specific

models of household demand that fit into the general form (27) and either satisfy or violate our two

key conditions in Assumptions 1 and 2.

22Specifically, the first condition in (29) (i.e., that Md > 1−β) corresponds to the second property of the consumption
function (“front-loaded MPCs”) discussed in Section 4.3—that is, it ensures that limℓ→∞Mt+ℓ,t = 0. The second condition
in (29) guarantees that the general equilibrium Keynesian cross feedback is in fact front-loaded enough to stabilize debt.
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What environments are consistent with self-financing? Our generalized aggregate demand block

(27) is consistent with many familiar models of household consumption-savings decisions.

1. Permanent-income consumers. The canonical PIH model readily fits into our generalized aggre-

gate demand structure with Md = My = 1−β and δ = ω = 1. It is immediate that Assumptions

1 and 2 are violated. First, a deficit today together with (finitely) delayed financing does not

induce a demand boom, simply because future tax hikes are not discounted further. Second,

even if there was a general equilibrium boom, it would never be “quick”, as permanent-income

households postpone part of their spending into the infinite future, violating (28).

2. Liquidity constraints. Our baseline OLG model can be interpreted as a reduced-form represen-

tation of occasionally binding liquidity constraints (see Farhi and Werning, 2019). This inter-

pretation extends to the present generalization, with the following additional flexibility: since

(27) disentangles the MPC out of wealth Md and income My , the present structure is also con-

sistent with “hybrid” models that add a margin of hand-to-mouth spenders. Such models have

received attention in recent work because they tend to provide a relatively accurate approxi-

mation of aggregate demand in richer HANK models (Auclert, Rognlie and Straub, 2018; Wolf,

2021a). They are nested herein by lettingω equal the survival rate of the OLG households and by

setting My =µ+ (1−µ)(1−βω), Md = (1−βω), and δ= (1−µ)(1−βω)
µ+(1−µ)(1−βω) , where µ ∈ (0,1) is the frac-

tion of hand-to-mouth spenders. It is then straightforward to verify that, as long as ω < 1,both

Assumptions 1 and 2 are satisfied, and hence our self-financing result holds. Our quantitative

analysis in Section 6 will rely on a particular, calibrated version of this hybrid model.

It is instructive to also consider an alternative environment with a mixture of hand-to-mouth

and permanent-income consumers—i.e., the “spender-saver model” of Campbell and Mankiw

(1989) and Galí, López-Salido and Vallés (2007). This corresponds to the knife-edge case of the

previous hybrid example in which ω = 1. Both Assumptions 1 and 2 then fail. The presence of

a margin of permanent-income savers means that (i) the effect of the future tax hike on date-0

consumption never vanishes, and (ii) the boom is never fast enough to return public debt back

to trend. As a result, the date-0 boom is always and invariably offset by a subsequent bust,

with the self-financing share ν equal to zero.23 This stark result is a feature rather than a bug

of our theory: classical permanent-income savers correspond to an idealistic infinite-horizon,

infinite-liquidity, and infinite-rationality scenario—a limit that can be refuted empirically on

multiple grounds. These include: (i) an infinite long-run elasticity of household asset demand

with respect to interest rates (e.g., Moll, Rachel and Restrepo, 2022); (ii) counterfactually low and

23A visual illustration is provided in Appendix B.1. Also, similar conclusions apply when a margin of PIH households is
added to our baseline OLG block.
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backloaded MPCs (see Section 6.1); and (iii) unrealistically strong responses to news about the

future (e.g., as emphasized in the forward guidance puzzle literature). Finite horizons, wealth

in the utility function of savers (Michaillat and Saez, 2021), liquidity constraints (as in HANK),

and certain kinds of behavioral frictions (as discussed further below) all break this unrealistic

benchmark and return us to our self-financing result.

3. Informational or behavioral frictions. Our general demand block (27) can also capture the essence

of how aggregate demand is influenced by incomplete information (Angeletos and Lian, 2018),

limited rationality (Farhi and Werning, 2019; Vimercati, Eichenbaum and Guerreiro, 2021; An-

geletos and Sastry, 2021), and cognitive discounting (Gabaix, 2020). The common implication

of these frictions is to dampen forward-looking behavior, which translates to a lower ω in (27).

This in turn has two conflicting effects. First, the initial partial equilibrium demand boom is am-

plified: the future tax hike is discounted even further, and so the initial boom is larger. Second,

the intertemporal Keynesian cross is weakened, as future gains in income do not feed back as

strongly to today’s consumer spending. We can see this in Assumption 2: a smaller ω decreases

the left-hand side of (28), reflecting a Keynesian boom that is less front-loaded. We provide a

quantitative illustration of these effects in Section 6.2 and Appendix C.5.

5.2 Investment

Our second extension illustrates the robustness of our insights to the presence of firm investment. We

sketch the main ideas here and delegate the details to Appendix B.2.

Relative to our baseline model, this extension features a meaningfully generalized supply block,

with firms employing both labor and capital, and with capital owned and accumulated by the firms

themselves. Firms continue to distribute all their earnings, now net of investment costs, as dividends

to the households. It follows that, similar to our baseline model, aggregate firm saving (now net of

physical investment) is zero and all public debt is still owned and accumulated by the households.

For our purposes, the main insight is that equation (12) continues to hold, just now in terms of

consumption ct rather than output yt . Put differently, the Keynesian cross applies to output net of

investment. Furthermore, since investment is not taxed, the law of motion for public debt in equation

(15) also continues to hold if we replace yt by ct .24 It follows that the equilibrium continues to be

characterized as in Proposition 1, with yt re-interpreted as ct , and so nothing of essence changes.

In particular, the only change has to do with how the dynamics of investment and capital influence

real marginal costs and thereby date-0 inflation. This complication is absent when prices are rigid; in

24Note that the households continue to face a proportional tax on the sum of labor and dividend income at rate τy ; but
since dividend income is now net of investment, this tax is effectively a proportional tax on their consumption.
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this case, Theorem 1 remains the same. More generally, the introduction of investment modifies the

inflation/debt erosion channel. However, as emphasized at the end of Section 3, this channel has only

a “scale” effect: it moderates the effective innovation in real public debt (and real household wealth),

without affecting its dynamic propagation, or the nature and shape of the deficit-led Keynesian boom.

Our limiting self-financing result thus again applies without change.25

5.3 More general monetary policy

We now return to our baseline environment, but relax the assumption of a “neutral” monetary policy.

Specifically, we now consider the more general monetary rule (9), restated here for convenience:

rt =φyt (30)

The φ> 0 scenario can be interpreted as a hawkish monetary authority that leans against the deficit-

led Keynesian boom. The φ< 0 scenario, on the other hand, can help capture two kinds of monetary

accommodation: the case of a monetary authority that purposefully lets the government’s cost of

borrowing fall when fiscal space is tight; and that of a monetary authority constrained by the ZLB.26

We continue to identify self-financing with the combination of the tax base and debt erosion ef-

fects,27 and we ask howφ ̸= 0 affects their potency. For this we will need to restrictφ ∈ [−1/σ, φ̂), where

φ̂≡ τy

βDss
Y ss

. These bounds have a simple interpretation: when φ=−1/σ, the monetary accommodation

and the deficit-driven boom turn out to be so large that there is immediate self-financing; and when

φ≥ φ̂, the increase in the interest-rate costs of public debt is so large that the tax-base channel is fully

counteracted. We now have the following generalized self-financing result.

Theorem 3. Consider our OLG-NK environment with ω < 1 and τy > 0, and let fiscal and monetary

policy obey, respectively, (6) and (30). Then there exists a φ̄ ∈
(
0,

τy

βDss
Y ss

)
such that:

1. If φ < φ̄, complete self-financing is attained as the fiscal adjustment is infinitely delayed, i.e.,

ν→ 1 and limk→∞Et [dt+k ] → 0 as τd → 0 (from above).

2. If φ> φ̄, there exists a ν̄ ∈ (0,1), such that any bounded equilibrium has degree of self-financing ν

with ν< ν̄.
25Additional subtleties would arise if we were to relax the assumption that firms do not save or borrow. If they did, then

this could influence how much of the increase in public debt translates to an increase in household wealth. This mecha-
nism is beyond the scope of our paper. On the other hand, it is straightforward to see that nothing in our arguments hinges
on the abstraction from adjustment costs or variable capacity utilization, so the result presented here is fully consistent
with the production structures considered in quantitative business-cycle models (e.g., Smets and Wouters, 2007).

26To understand the latter case, note that, as long as κ > 0, any deficit-led boom comes together with inflation; and as
long as the ZLB binds, such inflation translates one to one to negative real rates, or equivalently to φ< 0.

27While this makes sure that our notion of self-financing remains the same as we move from φ = 0 to φ ̸= 0, it requires
an adjustment in the formal definition of ν. See Appendix B.3 for details.
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The intuition underlying Theorem 3 is straightforward. If φ < 0 (i.e., monetary accommodation),

then, in response to the fiscally-led boom, real rates fall, which not only helps the government budget

but also leads to households front-loading their spending even more. The boom is thus even quicker

and debt is even less persistent—i.e., we obtain a smaller ρd than Theorem 1. It follows that, with

monetary accommodation, even less of a delay in the promised fiscal adjustment is needed to ensure

material self-financing. Conversely, if φ > 0 (i.e., the monetary authority leans against the boom),

then real rates rise, leading households to postpone their spending, thus delaying the boom and giv-

ing larger ρd . The cutoff φ̄ is exactly the point where the monetary policy-induced delay prevents

self-financing from returning real government debt to steady state, delivering ρfull
d (φ̄) = 1. For any

strictly more aggressive monetary policy (φ> φ̄), complete self-financing is not possible and the req-

uisite fiscal adjustment is bounded away from zero: for any φ> φ̄, there is a threshold τd such that a

(bounded) equilibrium exists, and government debt returns to steady state, if and only if τd > τd

(
φ

)
.

In particular, in this case, self-financing is necessarily partial, with ν bounded above by ν̄< 1.28

5.4 Distortionary tax hikes

Our main analysis has treated the fiscal adjustment margin as non-distortionary. We here investigate

what happens if adjustment is instead distortionary. In particular, we now replace our baseline fiscal

rule (5) with the following alternative:

Ti ,t = τy,t Yi ,t −Et (31)

where the time-varying distortionary tax rate τy,t is now given by

τy,t = τy +τd
D t −D ss

Y ss
. (32)

After log-linearization, this extended model variant maps into exactly the same aggregate demand re-

lation and law of motion for public debt as before; intuitively, in those equations, what matters is only

how much tax revenue is extracted from the private sector, not whether it is done in a distortionary or

lump-sum way. The only model equation that is affected is the NKPC, where the time-varying distor-

tion in labor supply now manifests itself as a cost-push shock:

πt = κ(yt +ζdt )+βEt [πt+1] (33)

28This discussion suggests a close connection between our results here and those for the general aggregate demand re-
lation presented in Section 5.1. Intuitively, both an aggressive monetary authority and low MPCs can result in consumer
spending being sufficiently delayed, thus preventing fiscal revenue from being raised fast enough. We confirm this in-
tuition in Appendix B.3: as we show there, the cutoff φ̄ can equivalently be interpreted as being the value that delivers
spending sufficiently postponed to violate our most general “front-loading” condition in Assumption 2.
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where ζ is a function of model primitives such that ζ > 0 if and only if τd > 0 (see Appendix B.4).

Intuitively, higher debt maps into higher distortionary taxes, and thereby to a higher labor wedge and

higher real marginal cost for a given level of output.

This modification of the model again has very limited effect on our headline results. First, if κ= 0,

then nothing changes, and in particular the entirety of Theorem 1 continues to hold. Second, even if

κ > 0, then nothing of essence changes: as we have already emphasized, our characterization of the

equilibrium dynamics of yt and dt is robust to the specification of the NKPC, and thus in particular

to the presence of additional cost-push shocks. Furthermore, in the limit of interest (i.e., as τd → 0),

those cost-push terms in fact vanish, and so the second part of Theorem 1 remains intact even if κ> 0.

The economics of this limit case are particularly transparent: because our original self-financing limit

result guarantees that fiscal adjustment is never needed, it makes no difference whether the fiscal

adjustment was hypothesized to be distortionary or lump sum.

5.5 Government spending

While we have so far considered a policy that hands out lump-sum transfers to households, it is

straightforward to see that our results extend with almost no change to deficit-financed government

purchases. We sketch the main points here and relegate details to Appendix B.5.

The only change relative to our baseline economy is that the government now consumes some

amount Gt of the final good. We assume that Gt is a stochastic, mean-zero spending shock, and we

also shut down the lump-sum transfers featured in our baseline analysis. The linearized government

budget constraint becomes

dt+1 = 1

β

[
dt − tt + g t +βD ss

Y ss (it −πt+1) ,

]
(34)

where g t = Gt
Y ss . We next specify taxes as follows:

tt = τd · (dt + (1−τy )g t )+τy yt , (35)

where the presence of (1− τy ) in front of g t ensures that τd = 1 again corresponds to a period-by-

period balanced budget.29 Finally, the aggregate output market-clearing condition is replaced by

yt = ct + g t . (36)

Relative to our baseline environment, switching to government purchases has two effects. First,

the deficit shock immediately and one-to-one maps into demand, rather than leading to a gradual,

moderately persistent increase in spending (e.g., recall Figure 2). Second, g t translates to a cost-push

29To see this, one can guess and verify that, under the above specification, τd = 1 translates in equilibrium to yt = g t ,
tt = g t , and dt = 0 for all t (i.e., the fiscal multiplier is one, the primary surplus is zero, and debt stays in steady state).
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shock in the NKPC, with the formula given in Appendix B.5. We have already discussed why the sec-

ond effect will always be immaterial. The first effect, on the other hand, implies that even immediately

tax-financed government purchases have real effects—the well-known unit fiscal multiplier result of

Woodford (2011), Auclert, Rognlie and Straub (2018) and Hagedorn, Manovskii and Mitman (2019).

Our added insight here is that the fiscal multiplier increases monotonically with the delay in tax fi-

nancing, and that government spending can pay for itself if tax hikes are pushed far enough.

6 Quantitative analysis

We now ascertain the quantitative relevance of our insights. Specifically, we ask: how important is

the self-financing margin for realistic departures from PIH, delays in fiscal adjustment, and nominal

rigidities? We address this question in two steps. First, we present and calibrate a quantitatively rele-

vant extension of our baseline model. Second, we use the model to compute the self-financing share

ν under different, empirically plausible, assumptions on delays of fiscal financing.

6.1 Model and calibration strategy

We consider a variant of our model in Section 2 with the baseline fiscal rule (6), but with one twist:

we add a margin µ ∈ (0,1) of hand-to-mouth spenders, along the lines discussed in Section 5.1. These

agents receive the same income and pay the same taxes as the perpetual-youth consumers, but only

the latter save and hold government debt. Further details are presented in Appendix C.1.

This hybrid spender-OLG model is the ideal environment for our quantitative analysis, for two

reasons. First, it remains simple enough to fit into the generalized demand block of Section 5.1. As a

result, we can readily invoke Theorem 2 to verify whether complete self-financing obtains in the limit

as τd →∞. Second, and more importantly, it is rich enough to agree with quantitative HANK models

on their implied intertemporal MPCs (Auclert, Rognlie and Straub, 2018; Wolf, 2021a) and to match

the relevant empirical evidence. Since the micro-foundations of aggregate demand affect the degree

of self-financing only through those intertemporal MPCs (see Appendix A.4 for the formal discussion),

it follows that our calibrated model is a suitable laboratory for evaluating whether a quantitatively

meaningful degree of self-financing can obtain for realistic parameterizations of the intensity of fiscal

adjustment, as herein parameterized by τd .30

Calibration. We discuss the model calibration in three steps: evidence on household consumption

behavior to pin down the spender share µ and the OLG coefficient ω; evidence on fiscal adjustment

to pin down τd ; and all other parts of the model.

30We note that the same is not true for our baseline OLG model; see the first point of the discussion on calibration below.
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Parameter Description Value Target Value

Consumer spending

µ Share of HtM 0.111 Average MPC 0.22

ω OLG survival rate 0.88 Short-run MPC slope 0.88

Fiscal adjustment

τd Tax feedback {0.085,0.026,0.004} Literature, see text

Rest of the model

σ EIS 1 Standard

β Discount factor 0.998 Annual real rate 0.01

τy Tax rate 0.3 Average Labor Tax 0.3

D ss/Y ss Gov’t debt 1.04 Liq. wealth holdings 1.04

κ NKPC slope 0.01 Standard

Table 1: Hybrid OLG-spender model, calibration.

Consumer spending behavior. Empirical evidence on the household-level consumption response

to income gains suggests two salient features of consumer spending behavior (Fagereng, Holm and

Natvik, 2021). First, the average MPC out of income gains is elevated, with a standard quarterly value

of around 0.22. Second, the income gain is spent gradually. Our baseline OLG environment of Section

2 provides a tight joint restriction on the level of the MPC and its dynamics: the level MPC (i.e., entry

M0,0 of the matrix of MPCs) is 1−βω, while the slope of the spending profile (i.e., the ratio of Mℓ,0 to

Mℓ−1,0) is ω. This model-implied connection between level and slope is, unfortunately, inconsistent

with the data; in particular, relative to the impact MPC, income in the data is subsequently spent

much more quickly than predicted by the theoretical OLG-implied relationship. The spender-OLG

hybrid model instead allows us to disentangle the level and the intertemporal pattern of the spending

response to income gains in a way that is consistent with empirical evidence; in particular, we choose

the spender share µ and the OLG coefficient ω to jointly match (i) impact and (ii) short-run (i.e., up

to two years out) spending responses to lump-sum transfer receipt, as estimated by Fagereng, Holm

and Natvik. A visual illustration of the implied intertemporal MPCs is provided in the top left panel of

Figure 5, and a discussion of several alternative calibration strategies will follow in Section 6.2.

Current and future MPCs out of today’s income gains—i.e., the estimand of Fagereng, Holm and

Natvik—is of course not all that matters for our theory; for our general equilibrium Keynesian cross,

it is similarly important how anticipated income changes in the (far) future affect spending today

(i.e., entries Mt ,t+ℓ for large ℓ in the matrix of MPCs). Given the lack of empirical evidence on such

responses to (far-away) income news shocks, our baseline exercise simply extrapolates these spend-
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ing responses through the structure of the model. Reassuringly, as discussed in Wolf (2021a), our

spender-OLG model extrapolates in a way very similar to quantitative HANK models. Nevertheless,

we later also consider how results change with additional discounting due to limited knowledge or

limited rationality, consistent with suggestive evidence from Ganong and Noel (2019).

Delay in fiscal adjustment. We henceforth focus on fiscal rule (6), in line with a large literature in

the footsteps of Leeper (1991). Because prior work has estimated this type of rule, we can draw from it

to discipline the calibration of τd . In particular, we consider a range of values taken from Galí, López-

Salido and Vallés (2007), Bianchi and Melosi (2017), and Auclert and Rognlie (2018), displayed in the

middle part of Table 1. A detailed literature review is provided in Auclert, Rognlie and Straub (2020).31

Rest of the model. The remaining model parameters are set to standard values. First, we set σ= 1,

giving log preferences. Second, we set the discount factor to hit a steady-state real rate of interest

of one per cent. Third, we set τy = 0.3, in line with the discussion in DeLong and Summers (2012):

for every dollar of additional output, we assume that the primary surplus automatically rises by 30

cents. Fourth, we set the slope of the NKPC to 0.01, a value consistent with the related empirical

and quantitative literatures (e.g., see Galí and Gertler, 1999; Christiano, Eichenbaum and Evans, 2005;

Hazell et al., 2022; Barnichon and Mesters, 2020). In one of our robustness exercises, we will also

consider a slope of 0.1—an ad-hoc, materially larger value that could be relevant in the inflationary

post-covid environment.

6.2 Are stimulus checks plausibly self-financed?

It is straightforward to verify that our calibrated spender-OLG model satisfies the sufficient conditions

identified in Theorem 2 required for complete self-financing to be possible in the limit as τd → ∞.

What remains is to ascertain how close we are to this limit for the range of τd suggested by the relevant

empirical literature. Results are displayed in Figure 4.

The figure shows output (left panel) and inflation (middle panel) impulse responses to a date-0

deficit shock for our three fiscal adjustment coefficients τd (shades of grey); the right panel further-

more shows the degree of self-financing ν as a function of τd over the entire unit interval. As expected,

the share of self-financing ν is decreasing in τd and approaches one as τd → 0, consistent with Theo-

rem 2. For the purposes of the quantitative analysis here, the key takeaway is that we are already quite

close to this limit for the values of τd estimated in the aforementioned works, with ν up to 0.95. Fur-

thermore, given our assumed—empirically disciplined—flat NKPC, almost all of this self-financing is

coming through the tax base channel rather than through inflation.

31Specifically, our three values for τd correspond to their lower bound, preferred estimate, and upper bound for the
fiscal adjustment coefficient (ψ in their notation). We note that all three values correspond to “passive” fiscal rules in the
terminology of Leeper (1991). See Appendix C.3 for further details.
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Figure 4: Impulse responses of output yt , inflationπt , and the total self-financing share ν to the deficit
shock ε0 as a function of τd . The left and middle panels show the impulse responses for the three
values of τd discussed in Section 6.1. In the right panel these three points are marked with circles.

The remainder of this section discusses several robustness exercises and extensions.

Assumptions on consumer behavior. As remarked in Section 6.1, our calibration strategy relied on

two standard but potentially material assumptions: first, we disciplined the slope of the spending pro-

file (i.e., entries Mℓ,0) from evidence on relatively short-run spending behavior (small ℓ); and second,

we relied on model structure to extrapolate from responses to contemporaneous income changes to

spending behavior following income news shocks (i.e., entries Mt ,t+ℓ). We now investigate how our

conclusions change with alternative calibration strategies and modeling assumptions.

Spending responses in the tails. As we emphasized throughout Sections 4 and 5.1, sufficiently

front-loaded intertemporal MPCs are important for our self-financing results—they are what ensures

a front-loaded Keynesian boom. We thus now consider alternative calibration strategies that try to

more directly leverage information on spending responses to lump-sum transfer receipt in the tails

(i.e., Mℓ,0 for large ℓ). These tail responses are crucial to determine how fast cumulative MPCs con-

verge to 1 and thus how front-loaded the Keynesian boom turns out to be.32

Results are reported in Figure 5. Here the three panels correspond to three different models: the

calibrated spender-OLG model we have worked with so far (top panel) and two alternatives (middle

and bottom panel). Our empirical targets, reported as the grey areas (corresponding to 95 per cent

confidence intervals) in the three “cumulative MPC” panels, are again taken from Fagereng, Holm

32Yet another calibration strategy is presented in Appendix C.2. There we discipline the discounting coefficient ω
through empirical evidence on long-run elasticities of household asset demand. Interestingly, this very different (and
much less direct) approach suggests values of ω reasonably close to our baseline calibration strategy.
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BASELINE CALIBRATION

LOWER BOUND CALIBRATION

EXTENDED THREE-TYPE MODEL

Figure 5: Top panel: iMPCs, cumulative MPCs, and self-financing share ν (as a function of τd ) in the
baseline model. Middle and bottom panels: same as above, but for models calibrated to (also) match
far-ahead tail MPCs. Parameter values are reported in Appendix C.2.
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and Natvik (2021) (see their Figure 2).

Consider first the top panel. By construction, this model matches MPCs—and thus also cumu-

lative MPCs—over the first couple of years after income receipt. However, as revealed by the mid-

dle panel, the implied cumulative MPC appears to converge to 1 somewhat too quickly, reflecting

intertemporal MPCs that converge to 0 relatively fast, at rate ω. The middle panel—labeled “lower

bound calibration”—instead disciplines the model parameters (µ,ω) by matching (i) the same impact

MPC as before and then (ii) targeting the lower bound of the estimated confidence interval five years

after the income receipt. This calibration strategy unsurprisingly delivers a larger ω (equal to 0.94),

mapping into materially flatter intertemporal MPC profiles (left part), inconsistent with evidence on

short-run spending responses (middle part). As expected, convergence to our self-financing limit is

slowed, though even in this calibration the degree of self-financing remains rather substantial for our

various fiscal adjustment rules. Finally, in the bottom panel, we consider an extended model—one

featuring spenders together with two types of OLG blocks, with heterogeneous ω1 and ω2—that is

rich enough to provide a tight fit to the entire dynamic profile of cumulative MPCs, up to five years

out. The left part of the bottom panel reveals that this model looks rather similar to our baseline cal-

ibration in the periods around income receipt, but then has somewhat flatter tail MPCs. Thus, as in

the middle panel, the speed of convergence to the self-financing limit is slowed down, though the

predicted degree of self-financing again remains meaningful.

Spending response to news about future income. All models discussed above are calibrated to be

consistent with evidence on consumer spending behavior in response to income shocks today; the

similarly important consumption response to “news shocks” (i.e., Mt ,t+ℓ), on the other hand, is ex-

trapolated through the model structure. We here briefly discuss results from two additional models

that extrapolate somewhat differently, with details in Appendices C.4 and C.5. First, in Appendix C.4,

we consider a fully-fledged quantitative HANK model. Consistent with the results in Auclert, Rogn-

lie and Straub (2018) and Wolf (2021a), we find that this model extrapolates MPCs across horizons in

almost the same way as our reduced-form spender-OLG hybrid model, so our conclusions on self-

financing are largely unchanged. Second, we consider a variant of our spender-OLG model with cog-

nitive discounting. As discussed in Section 5.1, we expect this behavioral friction to introduce two off-

setting effects on ν—the future tax hike is discounted by more, but higher future income feeds back

less strongly to the present. Our model simulations confirm this intuition: we find that ν is higher

than in our baseline model for intermediate values of τd , but converges to the full self-financing limit

somewhat more gradually.33

33We expect similar results in behavioral model variants that replace cognitive discounting à la Gabaix, 2020 with in-
complete information à la Angeletos and Lian (2018) and/or bounded rationality à la Farhi and Werning (2019), Vimercati,
Eichenbaum and Guerreiro (2021), and Angeletos and Sastry, 2021.
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Steeper Phillips curve. In all quantitative experiments displayed above, self-financing occurred al-

most exclusively through the tax base channel, reflecting the fact that our assumed NKPC was—

consistent with empirical evidence and much quantitative modeling—very flat. Larger values of the

slope coefficientκhave two effects, as discussed in Section 4.4: first, for any given τd , the total amount

of self-financing ν increases; and second, the split of self-financing moves from the tax base effect to

inflation. In Appendix C.6, we repeat our analysis with somewhat more flexible prices, setting κ= 0.1.

This value lies at the upper end of recent empirical estimates pertaining to the inflationary post-covid

episode. We find that, with this alternative calibration, around 20 per cent of self-financing comes

through date-0 inflation.

Monetary policy reaction. Our baseline exercises assumed a monetary authority that neither ac-

commodates the fiscal deficit nor leans against the resulting Keynesian boom. Conceptually, it allows

us to cleanly isolate the quantitative potential of the interaction between consumer spending behav-

ior and fiscal financing delays at the heart of our paper. Practically, it at least broadly consistent with

the recent post-covid U.S. policy experience. In Appendix C.7, we nevertheless consider what hap-

pens when the monetary authority leans more aggressively against the fiscal boom, consistent with a

standard Taylor-type rule. The results from this exercise are consistent with the insights in Theorem

3. First, for moderately active monetary reaction, full self-financing is still possible, though conver-

gence as τd → 0+ is now slowed down. Second, if the monetary response is very aggressive, then for a

bounded equilibrium to exist fiscal adjustment needs to be sufficiently strong, and so complete self-

financing is not possible anymore. That being said, for empirically relevant calibrations of the Taylor

rule and of the slope of the NKPC, the degree of self-financing can still be substantial.

7 Conclusion

The central contribution of this paper is to clarify the conditions under which fiscal deficits can fi-

nance themselves. Our analysis applies to environments with two empirically relevant features: (i)

nominal rigidities and (ii) a violation of Ricardian equivalence due to finite lives or liquidity con-

straints. The headline result is that, as the fiscal authority delays the tax adjustment, the demand-led

boom gets larger and more persistent, and this contributes to a larger share of self-financing. In the

limit, deficits can even fully pay for themselves.

Our results have important conceptual as well as practical implications. Conceptually, they sug-

gest that one specific idea from the classical Fiscal Theory of the Price Level—that future tax hikes

are not necessary to finance today’s deficits—is more robust than commonly believed. Our accom-

modation of this idea does not rely on the threat of a government violating its budget constraint, nor
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is it vulnerable to debates regarding equilibrium selection. Rather, it is grounded in realistic depar-

tures from permanent-income consumer behavior, together with sufficient delay in fiscal adjustment.

Practically, our results suggest that a meaningful degree of self-financing is empirically plausible, es-

pecially in the absence of aggressive monetary policy responses. These insights seem relevant for re-

cent U.S. fiscal stimulus experiments and for the related debate on “excess savings” (Auclert, Rognlie

and Straub, 2023): fiscal deficits without a quick tax offset are predicted to lead to a long-lived boom

and to largely pay for themselves.

We leave several important avenues for future work. First, to assess the practical relevance of

our results, we disciplined the theory with the best available evidence on consumer behavior and

the degree of nominal rigidity. A more direct empirical test would compare the dynamic causal ef-

fects of equally large but differentially financed changes in government spending, using the standard

macroeconometric toolkit (see Ramey, 2016). Second, a meaningful limitation of our theory was the

assumption of a closed economy. In an open economy, some of the deficit-led demand boom will leak

abroad, dampening the general equilibrium Keynesian amplification. We therefore expect our mech-

anism to be more relevant for large closed economies (like the U.S.) than for small open economies.

Third, note that our analysis here has been entirely positive, not normative. The implications of our

results for optimal fiscal policy seem like another important direction for future work.
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Online Appendix for:

Can Deficits Finance Themselves?

This online appendix contains supplemental material for the article “Can Deficits Finance Them-

selves?”. We provide: (i) supplementary discussion of our baseline model and results in Sections 2-4;

(ii) details for the extensions considered in Section 5; (iii) additional analysis and alternative results

for our quantitative investigation in Section 6. The end of this appendix contains all proofs.

Any references to equations, figures, tables, assumptions, propositions, lemmas, or sections that are

not preceded by “A.”—“D.” refer to the main article.

A Supplementary details

We here provide some additional discussion of our baseline model. Subsection A.1 characterizes labor

supply and explains how our model’s supply block reduces to the standard NKPC. Subsection A.2

explains how we characterize equilibria under the alternative fiscal policy rule (7). Subsection A.3

provides a detailed discussion of the PIH benchmark (ω = 1). Finally, Subsection A.4 interprets our

self-financing result from a sequence-space perspective.

A.1 The supply block

Unions equalize the post-tax real wage and the average marginal rate of substitution between labor

supply and consumption. Since we abstract from heterogeneity in labor supply Li ,t = Lt , the optimal

labor supply relation is

(1−τy )Wt =
χL

1
ϕ

t∫ 1
0 C−1/σ

i ,t di
, (A.1)

With Log-linearizing, we obtain (13).

Optimal firm pricing decisions as usual give inflation as a function of real marginal costs. With a

standard constant-returns-to-scale, labor-only production function this gives (e.g., see the textbook

derivations in Woodford, 2003a; Galí, 2008)

πt = κ̃wt +βEt [πt+1] , (A.2)
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where κ̃ is a function of firm-side primitives, including in particular the stickiness of prices. Combin-

ing (A.2) with (13) and imposing that ct = ℓt = yt we obtain

πt = κ̃
(

1

ϕ
+ 1

σ

)
︸ ︷︷ ︸

≡κ

yt +βEt [πt+1] , (A.3)

as required.

A.2 Equilibrium characterization with the alternative fiscal rule

We characterize the equilibrium in our OLG-NK environment with ω < 1, τy > 0, and the alternative

fiscal rule (7) here. The aggregate demand relation (11) together with monetary policy (8) and market

clearing yt = ct lead to the following recursive aggregate demand curve34

yt =
(
1−βω)

(1−ω)

βω
(dt − tt )+Et

[
yt+1

]
, (A.4)

where we use that Et [dt+1] = 1
β (dt − tt ) from (4).

We characterize the bounded equilibrium path through backward induction. Given the alternative

fiscal rule (7), we know that, for t ≥ H ,

dt − tt = 0 =⇒ yt = Et
[

yt+1
]

.

We focus on the equilibrium with yt = 0 for t ≥ H . As discussed in Footnote 18, this equilibrium

selection can be justified in two ways: strengthening the boundedness requirement in the equilibrium

definition or considering limits to φ = 0 from above. The sole role of any of these modifications is to

remove a class of sunspot equilibria that are inherited from the standard New Keynesian model. Given

this selection we use (A.4) to find the equilibrium path of
{

yt ,dt
}H−1

t=0 through backward induction

starting from

yH =χ0dH with χ0 = 0. (A.5)

For t ≤ H −1, substitute the alternative fiscal rule (7) into (A.4), giving

yt =
(1−βω)(1−ω)

βω

1+ (1−βω)(1−ω)
βω

τy

(dt +εt )+ 1

1+ (1−βω)(1−ω)
βω

τy

Et
[

yt+1
]

.

34Note that (12) does not apply here, since its derivation uses the baseline fiscal policy (6).
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As a result, for t ≤ H −1,

yt =χH−t (dt +εt ) with χH−t =
(1−βω)(1−ω)

βω

1+ (1−βω)(1−ω)
βω

τy

+
1
β

(
1−τyχH−t

)
1+ (1−βω)(1−ω)

βω
τy

χH−t−1, (A.6)

where, according to (7), εt = 0 for all t ̸= 0. Rearranging terms, we find the following recursive formula

for the χs:

χH−t =
(1−βω)(1−ω)

βω
+ χH−t−1

β

1+
(

(1−βω)(1−ω)
βω

+ χH−t−1
β

)
τy

= g
(
χH−t−1

)
, (A.7)

where

g
(
χ
)= (1−βω)(1−ω)

βω
+ χ
β

1+
(

(1−βω)(1−ω)
βω + χ

β

)
τy

and g ′ (χ)= 1

β

1(
1+τy

(
(1−βω)(1−ω)

βω + χ
β

))2 ≥ 0 ∀χ≥ 0. (A.8)

We thus know that

χk ∈ (0,
1

τy
) ∀k ≥ 1 and χk increases in k. (A.9)

From (4), rt = 0, (7), and (A.6), we also know that

E0 [dt ] = 1

βt
Πt−1

j=0

(
1−τyχH− j

)
(d0 +ε0) (A.10)

To further characterize the equilibrium we begin by considering an alternative economy with rigid

prices (κ= 0) but otherwise identical to the baseline economy. Let ν′ denote the self financing share

in this alternative economy, i.e.,

ν′ ·ε0 = ν′y ·ε0 ≡
∞∑

k=0
τyβ

kE0
[

yk
]

.

In this economy, there is no t = 0 price level jump and so the real value of public outstanding at t = 0,

d0 = b0 = 0 is pre-determined. From (A.6) and (A.10), we have that

ν′ =
H−1∑
t=0

Πt−1
j=0

(
1−τyχH− j

)
τyχH−t = 1−ΠH−1

j=0

(
1−τyχH− j

)
. (A.11)

We can now return to the general case with κ≥ 0. From the NKPC (14) as well as the definitions in (20)

– (21), we have that

νp = κD ss

Y ss

τy
νy =

κD ss

Y ss

τy +κD ss

Y ss

ν (A.12)
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Finally, from the formula of d0 (16), we know

d0 =−νpε0 and νy =
(
1−νp

)
ν

′
.

Together, we have

ν= ν′

τy

τy+κDss
Y ss

+ κDss
Y ss

τy+κDss
Y ss

ν′
νy =

τy

τy+κDss
Y ss

ν′

τy

τy+κDss
Y ss

+ κDss
Y ss

τy+κDss
Y ss

ν′
, and νp =

κDss

Y ss

τy+κDss
Y ss

ν′

τy

τy+κDss
Y ss

+ κDss
Y ss

τy+κDss
Y ss

ν′
. (A.13)

This completes our characterization of the equilibrium.

A.3 The PIH/RANK benchmark (ω= 1)

This section provides a detailed comparison between our economy (ω< 1) and its textbook, representative-

agent counterpart (ω= 1).

The aggregate demand block. Recall that, with ω= 1, the aggregate demand block becomes

yt = Et

[
(1−β)

∞∑
k=0

βk yt+k

]
(A.14)

or equivalently

yt = Et [yt+1]. (A.15)

Although the Euler equation (A.15) is more familiar, the aggregate demand relation (A.14) is more

insightful, for several reasons. First, it reveals the general equilibrium interactions hidden behind

the representative consumer’s Euler condition—i.e., the intertemporal Keynesian cross (IKC). Second,

it translates this IKC to a dynamic game of strategic complementarity among consumers: when a

consumer expects others to spend more, she finds it optimal to spend more herself, because high

spending by others means higher income for her. Third, it makes clear why this game admits multiple

equilibria—because the cumulative marginal propensity to consume is one. And fourth, it reveals

that fiscal policy does not enter the payoffs and the best responses of this game: holding constant

aggregate spending, a consumer’s optimal spending is invariant to fiscal policy. It follows that public

debt and deficits can drive spending if and only if they serve as coordination devices (sunspots).

What are solutions of the aggregate demand block (A.14), studied in isolation? An obvious one is

yt = 0 for all t and states of nature, which means that the economy stays at steady state for ever. But

yt = ȳ is also a solution, for arbitrary ȳ ; this corresponds to consumers at every t spending ȳ because,

and only because, they expect all future consumers to do the same. Finally, there exist equilibria in
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which yt = ξ
∑t

k=0εt−k , for arbitrary ξ ∈ R. In any such equilibrium, consumers vary their spending

with the current deficit by an amount equal to ξ because and only because they expect future con-

sumers to keep responding to the current deficit in the same away, in perpetuity.

Feedback between consumers & fiscal policy in RANK. The above statements are valid characteri-

zations of solutions to (A.14), without reference to fiscal policy. Conventional notions of equilibrium—

including in particular our Definition 1—however also require that debt does not explode, thus putting

the government budget constraint back into the picture. This in turn puts joint restrictions on fiscal

policy and consumer behavior, despite the fact that consumers do not care for fiscal policy in the

precise sense of the game described above.

What are these restrictions? For this it will prove instructive to consider first the case in which

τy = 0 and κ= 0. In this case, the law of motion for public debt reduces to

dt+1 =β−1(1−τd )(dt +εt ).

This relation has two key properties. First, it is invariant to consumer behavior. And second, it has

debt converge back to steady state if and only if τd > 1−β. We thus arrive at the following conclusion.

Proposition A.1. Suppose ω= 1, τy = 0, and κ= 0. Then:

1. If τd > 1−β, there exist multiple self-fulfilling (and bounded) equilibria. In particular, yt = ȳ +
ξ
∑t

k=0εt−k is an equilibrium for any ȳ ∈R. and any ξ ∈R.

2. If instead τd < 1−β, there does not exist a (bounded) equilibrium.

It is important to recognize that the non-existence of equilibrium in case (ii) is the byproduct of

“bad” fiscal policy: when τd < 1−β, there is no problem in finding a fixed point in the GE interaction

among the consumers, but there is also no way for public debt to be sustainable (i.e., not to explode).

Now let us relax the restrictions τy = 0 and/or κ = 0 (while maintaining ω = 1). This does not

change either condition (A.14) or our aforementioned logic about consumer behavior: fiscal policy

continues not to enter the game among the consumers. But the opposite is no more true: consumer

behavior now enters the government’s budget via the tax base (when τy > 0) and/or the real value of

public debt (when κ> 0). This in turn modifies the second (but not the first) part of Proposition A.1.

Proposition A.2. Suppose ω= 1 and max{τy ,κ} > 0. Then:

1. If τd > 1−β, there exist multiple self-fulfilling (and bounded) equilibria.

2. If instead τd < 1−β, there exists a unique bounded equilibrium.
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To understand the content of Proposition A.2, consider first the case with rigid prices (κ= 0). Had

τy been zero, then τd < 1−βwould have caused debt to explode regardless of how consumers behave.

But now that τy > 0, the following possibility is logically coherent (although, at least in our view, rather

implausible): consumers coordinate on an equilibrium among them that generates just enough tax

revenue to offset the adverse effects of deficit shocks and to make sure that debt does not explode. By

direct analogy to the classical FTPL, we call this the “Fiscal Theory of Y” (FTY): in a world with rigid

prices (κ= 0) and passive monetary policy (φ= 0), consumers may coordinate on multiple self-fulling

spending behaviors and hence to multiple self-fulfilling levels of aggregate income, but only one of

them makes sure that debt does not explode when τd < 1−β. Next, if we let τy = 0 but κ> 0, then we

recover the original Fiscal Theory of the Price Level (FTPL): the set of multiple self-fulling spending

behaviors remains the same, but now there is a different unique selection among them that makes

sure that debt does not explode when τd < 1−β. And finally, a hybrid of these two extreme cases

obtains (and a different equilibrium is selected) when both τy > 0 and κ> 0.

We note that there is a long-standing theoretical debate about the plausibility of the FTPL. While

this debate is not our paper’s main theme or contribution, we hope that the above analysis helps make

clear the following points: (i) the precise sense in which fiscal policy does not enter the Intertemporal

Keynesian Cross (or the game among the consumers, when ω = 1); (ii) the reason why this game

admits multiple self-fulfilling equilibria; (iii) that the entirety of this multiplicity is consistent with

non-explosive debt when τd > 1−β; (iv) that no equilibrium is consistent with non-explosive debt

when τd < 1−β and τy = κ= 0; (v) that τy > 0 or κ> 0 allows debt to be non-explosive when τd < 1−β,

but only insofar as consumers coordinate on a particular self-fulfilling equilibrium among the many

of the aforementioned game; and (vi) that both the FTPL and the FTY translate to specific selections

among the multiple self-fulfilling solutions of the IKC. Last but not least, the unique “fundamental”

(or Markov Perfect) equilibrium of the aforementioned game is one where debt and deficits do not

influence aggregate demand, and debt is sustainable along this equilibrium if and only if τd > 1−β.

Returning to our environment. How does our environment fit into this picture? Once ω < 1, fiscal

policy becomes payoff-relevant in the game among the consumers. This then introduces a feedback

from fiscal policy to aggregate demand, differently from the permanent-income baseline.

To see this most clearly, again suppose first that τy = κ= 0, which means that consumer behavior

does not enter the government budget. Similarly to the ω = 1 case, this implies that public debt is

non-explosive if and only if τd > 1−β. Furthermore, it remains true that the game among consumers

admits multiple equilibria. For instance, if there are no deficit shocks, then yt = ȳ is an equilibrium

for any constant ȳ . Differently from the case above, however, the response of output to deficits is now

uniquely pinned down.

Proposition A.3. Suppose ω < 1 but τy = κ = 0. When τd < 1−β, there does not exist an equilibrium.
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And when τd > 1−β, there exist multiple bounded equilibria. The set of equilibria is then given by

yt = ȳ +χ(dt +εt )

for arbitrary ȳ ∈R and for a unique χ> 0, given by

χ= F1

1− (1−βω)
1−βω(1−τd )

.

In short, the “intercept” or “level” remains indeterminate (because the dynamic strategic comple-

mentarity is still 1), but the response to debt and deficits is uniquely pinned down (because debt and

deficits cease to be sunspots).

Finally return to the case where τy > 0—i.e., our baseline case. Then and only then there is a two-

way feedback between aggregate demand and the government budget. Furthermore, this two-way

feedback translates to a reduction in the effective degree of strategic complementary. From

F2 = 1− (1−ω)τy

1−ω (1−τd )
,

it is immediate that F2 < 1 if and only if both ω < 1 and τy > 0. This in turn helps explain why the

multiplicity disappears when and only when both ω< 1 and τy > 0. On other hand, the presence of a

feedback from output to the government budget constraint helps explain why a bounded equilibrium

exists not only for τd > 1−β but also for τd < 1−β.

Summary. From the preceding analysis we conclude that Proposition 1 combines the following sub-

tle lessons: ω< 1 alone explains why debt and deficits become fundamentals and feed into aggregate

demand; τy > 0 in turn explains how aggregate demand feeds into the government budget and can

aid debt sustainability even when τd < 1−β; and the combination of the two feedbacks finally helps

explain why our economy features a unique bounded equilibrium, despite the apparent failure of the

Taylor principle (φ= 0).

A.4 A sequence-space perspective

All results in the main part of this paper are stated and proved using a standard state-space approach

to equilibrium characterization. We can, however, develop some additional insights by instead adopt-

ing a sequence-space perspective. In the context of the paper as a whole the purpose of the sequence-

space analysis in this section is twofold. First, by adopting this sequence-space perspective, we will

be able to very easily substantiate a claim made in Section 6—that intertemporal MPCs fully charac-
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terize limiting self-financing equilibria. Second, we provide a different perspective on Assumption 2,

re-phrasing it as a sufficient condition ensuring that intertemporal MPCs decay “sufficiently quickly.”

Equilibrium. For the analysis in this section, we substantially generalize the aggregate demand re-

lation (11) to the following sequence-space relation:

ccc =M × (
yyy − ttt

)+Mi ×iii +Mπ×πππ (A.16)

where boldface denotes sequences. Our objective in this section is to shed further light on the pos-

sibility of complete self-financing in the limit with infinite delay. We maintain the assumption of a

neutral monetary policy and consider the limiting case of τd = 0. For simplicity, we also assume that

prices are rigid (κ= 0), thus focusing on the tax base channel.35

Imposing market-clearing and constant real rates, equation (A.16) becomes

yyy =M × (
yyy − ttt

)
(A.17)

Now note that, under our assumptions on fiscal policy, taxes are given

ttt = τy × yyy −εεε (A.18)

where εεε captures the exogenous policy intervention. For our “stimulus check” experiment, this a vec-

tor that has zeros everywhere but in its first entry. Combining (A.17) and (A.18), we find that output

in the limiting, complete self-financing equilibrium is characterized through the following system of

dynamic equations:

yyy = (1−τy )M × yyy +M ×εεε (A.19)

(A.19) is a variant of the intertemporal Keynesian cross studied previously in Auclert, Rognlie and

Straub (2018), but with a crucial difference: automatic tax financing is embedded in the tax revenue

term τy ×yyy , rather than being specified directly as part of the policy intervention (here εεε). This seem-

ingly subtle distinction has important implications and in particular connects tightly with our self-

financing results in Sections 4 and 5.1.

Discussion. The above analysis substantiates the claim made in Section 6: for a large family of mod-

els (including in particular our spender-OLG hybrid), the matrix of the intertemporal MPCs together

with the value of τy pin down the dynamics of output in the limiting self-financing equilibrium. It

35By an argument analogous to that surrounding Theorem 1, the extension to the partially sticky price case is concep-
tually straightforward. The only delicate part of the ensuring discussion is that we directly set τd = 0, instead of taking the
limit as τd →∞ from above, or proving the equivalence to H →∞. These details are fully taken care in our main analysis.
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remains to further characterize the solution of (A.19), allowing us to connect with the economic intu-

itions offered in Sections 4 and 5.1.

The remainder of the discussion here will leverage a crucial property of the intertemporal MPC

matrix M . Letting rrr ≡ (1, 1
1+r̄ , 1

(1+r̄ )2 , . . . ), we have that rrr ′ ·M (•,h) = 1
(1+r̄ )h —i.e., every dollar of income

is spent at some point. It follows from this property that any solution yyy of (A.19) necessarily has net

present value equal to 1
τy

times the net present value of the fiscal stimulus:

rrr ′yyy = (1−τy )rrr ′M × yyy +rrr ′M ×εεε

and so from the properties of M we obtain that indeed

τy ×rrr ′yyy = rrr ′εεε, (A.20)

as claimed. Next we note that the solution of (A.19) takes the simple form

yyy = [
I − (1−τy )M

]−1 ×M ×εεε (A.21)

where for the purpose of the discussion here we simply assume that the stated inverse exists.36 Our

self-financing results in Theorems 1 and 2 concern the question of whether, as fiscal financing is grad-

ually delayed further and further, we indeed converge to the general self-financing equilibrium char-

acterized by (A.21). As discussed following Theorem 1, the condition required for such convergence

to occur is that the Keynesian boom happens sufficiently quickly, raising all required revenue before

fiscal adjustment is ever actually necessary. In (A.21), the “quickness” of the Keynesian boom is en-

tirely governed by the properties of
[
I − (1−τy )M

]−1: if the off-diagonal entries of M decay to zero

sufficiently quickly, then the same is true for the off-diagonal entries of
[
I − (1−τy )M

]−1 (e.g., see

Bickel and Lindner, 2012). This then ensures that the solution yyy and thus the debt path ddd converge

to zero, which in turn is precisely what is needed for self-financing to obtain as fiscal adjustment is

delayed further and further. For our general aggregate demand relation (27), the condition stated in

Assumption 2 is simply what is needed to ensure that indeed the off-diagonal entries of M and thus[
I − (1−τy )M

]−1 decay to zero sufficiently quickly.

36Our analysis in the main text implies that, for standard models of the consumption-savings problem and if τy > 0,
then this inverse indeed exists.
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B Details on model extensions

We elaborate on the various extensions considered in Section 5: the richer aggregate demand block

in Appendix B.1; a model with investment in Appendix B.2; equilibria under more general monetary

rules in Appendix B.3; fiscal financing through distortionary taxes in Appendix B.4; and fiscal stimulus

in the form of government purchases in Appendix B.5.

B.1 A more general aggregate demand relation

In Section 5.1 we showed explicitly how several popular models of the household consumption-savings

problem can be written in our general form (27). We here elaborate on: (i) our discussion of the well-

known spender-saver model; and (ii) the model of cognitive discounting of Gabaix (2020).

Self-financing in the spender-saver model. We provide a visual illustration of self-financing—or the

lack thereof—in Figure B.1. The top panel shows impulse responses and the self-financing share in

the spender-saver model, while the bottom panel does the same for a spender-OLG hybrid model.

The top panel reveals that, in the spender-saver model, the self-financing share ν is always 0. In

particular, we see that the date-0 boom is always exactly offset (in present-value terms) by a bust at

date H—the date of the delayed fiscal adjustment. The intuition is that the presence of PIH house-

holds breaks our discounting and front-loading properties: PIH households mean that the date-H tax

hike affects date-0 demand, and similarly delay any date-0 boom to the infinite future. The empiri-

cally testable flipside of this “connection at infinity” is an infinitely large elasticity of household asset

demand (e.g., see the discussion in Kaplan and Violante, 2018). With ω < 1 we break this unrealistic

feature of the model, return to our discounting and front-loading properties, and thus see that the

date-H bust endogenously gets smaller and smaller as we again converge to full self-financing.

Cognitive discounting. Under cognitive discounting, a shock h periods in the future is addition-

ally discounted by a factor of θ, with θ = 1 corresponding to the standard full-information, rational-

expectations model and θ = 0 corresponding to myopic households. It is immediate that cognitive

discounting added to our baseline OLG model gives the adjusted aggregate demand relation

ct =
(
1−βω̃)(

dt +Et

[ ∞∑
k=0

(
βω̃θ

)k (
yt+k − tt+k

)])
. (B.1)

This fits into our demand structure (27) with My = Md = 1−βω̃, δ= 1 andω= ω̃θ. It is immediate that,

for ω̃< 1 and θ < 1, Assumption 1 holds. Differently from the baseline OLG case, however, Assumption
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SPENDER-SAVER MODEL

OLG-SPENDER HYBRID MODEL

Figure B.1: Top panel: impulse responses of output yt , government debt dt , and the total self-
financing share ν to the deficit shock ε0 as a function of H in a spender-saver model. Bottom panel:
same as above, but in an OLG-spender hybrid economy.
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2 does not hold automatically; plugging in to (28) and re-arranging we find that we need

τy > ω̃(1−θ)

1− ω̃θ
1−β

1−βω̃ (B.2)

This relation holds automatically for θ = 1, but need not hold for θ < 1; intuitively, as already discussed

in the main text, θ < 1 dampens demand spillovers from the future to the present and thus slows down

the Keynesian boom. (B.2) is, however, a very mild condition: even for θ = 0, as long as β is close to

one and for values of ω̃ as considered in Section 6, Assumption 2 holds even for small τy .

B.2 Investment

This section provides the missing details on the extension to models with investment discussed in

Section 5.2. We begin by stating the (linearized) equations of the extended model before then charac-

terizing its equilibrium.

Model equations. The household block changes very little. Households still receive labor income

and dividends; we now denote this total household income by et (which in equilibrium will be equal to

total household consumption rather than total aggregate income). The linearized household demand

relation is now

ct =
(
1−βω)(

dt +Et

[ ∞∑
k=0

(
βω

)k
(et+k − tt+k )

])
−γEt

[ ∞∑
k=0

(βω)k rt+k

]
, (B.3)

while labor supply still satisfies
1

ϕ
ℓt = wt − 1

σ
ct (B.4)

The firm block on the other hand changes materially relative to our baseline model. Since this

production side is entirely standard our discussion here will be brief and only present linearized op-

timality conditions; a detailed discussion of an almost identical model is offered in Wolf (2021b). The

production sector consists of three parts: perfectly competitive intermediate goods producers who

accumulate capital and hire labor on spot markets; monopolistically competitive retailers who pur-

chase the intermediate good and costlessly differentiate it, subject to nominal rigidities; and a com-

petitive final goods aggregator. Profits of the corporate sector as a whole are returned to households,

subject to the time-invariant tax τy . The relevant equilibrium relations follow from the behavior of

the intermediate goods producers and the retailers.

1. Intermediate goods producers. The production function takes a standard Cobb-Douglas form

with capital share α, and capital depreciates at rate δ. We let p I
t denote the real relative price of
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the intermediate good. Optimal labor demand gives the static relation

wt = p I
t +αkt−1 −αℓt (B.5)

while optimal capital accumulation gives37

1

β
(it −Et [πt+1]) =

(
1

β
−1+δ

)
×Et

[
p I

t+1 + (α−1)kt + (1−α)ℓt+1
]

(B.6)

By our assumptions on the production function total output is given as

yt =αkt−1 + (1−α)ℓt (B.7)

and finally investment xt satisfies

xt = 1

δ
(kt − (1−δ)kt−1) (B.8)

2. Retailers. Optimal price-setting as usual relates real marginal costs—here the relative price of

the intermediate good, p I
t —to aggregate inflation:

πt = κp I
t +βEt [πt+1] (B.9)

Aggregating dividend payments from intermediate goods producers and retailers, we obtain

Qt = Yt −Wt Lt −X t (B.10)

which implies that total household income Et (in levels) is given as

Et =Wt Lt +Qt = Yt −X t (B.11)

Aggregate output market-clearing dictates that

yt = C ss

Y ss
ct + X ss

Y ss
xt (B.12)

Finally we return to the government. The monetary rule (8) and the government budget constraint

(4) are unchanged. The fiscal policy rules (6) or (7) are also unchanged up to the tax base revenue term:

37Adjustment costs on the capital stock or investment flows would complicate this relation but not affect any of our
subsequent arguments.
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since the government taxes labor and dividend income, this term now equals τy ×Et .

Equilibrium characterization. Our key building block result is that we can reduce the equilibrium

of this extended model to a system of equations almost as simple as that of our baseline model in Sec-

tion 2. First, combining market-clearing and the policy rules with private-sector demand we obtain

ct =F1 · (dt +εt )+F2 ·Et

[(
1−βω) ∞∑

k=0

(
βω

)k ct+k

]
. (B.13)

Relative to our baseline model, the only change is that this equilibrium demand relationship is in ag-

gregate consumption ct rather than aggregate output yt . We emphasize that this is possible precisely

because the government taxes dividend and labor income, which as discussed above in equilibrium

is equal to total consumption. Second, the law of motion for aggregate debt is now

dt+1 =β−1

dt +εt − τd · (dt +εt )︸ ︷︷ ︸
fiscal adjustment

− τy ct︸︷︷︸
tax base

− D ss

Y ss (πt+1 −Et [πt+1])︸ ︷︷ ︸
price level

, (B.14)

with real debt at date 0 given as

d0 = b0 − D ss

Y ss (π0 −E−1 [π0]) =−D ss

Y ss
π0. (B.15)

Again, relative to the baseline model, the only change is that now it is aggregate consumption rather

than aggregate output appearing in (B.14).

We note that (B.13) - (B.14) is a system in {ct ,dt }∞t=0 that depends on the rest of the economy—and

so in particular the investment block—only through the presence of π0. π0 on the other hand can be

obtained as a function of the consumption path {ct }∞t=0 by solving the system (B.4), (B.5), (B.6), (B.7),

(B.8), (B.9) and (B.12) given consumption, and with the monetary policy rule (8) imposed. We write

this function as

π0 =Π0
(
{ct }∞t=0

)
(B.16)

The equilibrium described by equations (B.13) - (B.16) is straightforward to characterize given

our earlier analysis of the model without investment in Sections 2 and 4. We begin with the case of

perfectly rigid prices (κ = 0), and for simplicity restrict attention to the limiting self-financing case

(τd → 0 or H → ∞). In that case π0 = 0, so we can focus on the bivariate system (B.13) - (B.14) in

{ct ,dt }∞t=0. Crucially, this system is exactly the same as that covered in Theorem 1, so the equilibrium

characterization underlying that result applies unchanged, with ct replacing yt .

We now turn to the case of general κ. To this end let ct ,0 denote the solution of the rigid-price
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system, and furthermore let p I
t ,0 denote the corresponding equilibrium intermediate goods price ob-

tained by solving the system (B.4), (B.5), (B.6), (B.7), (B.8), and (B.12) for p I given {ct ,0}∞t=0. Proceeding

analogously to the proof of Theorem 1, we will now construct the equilibrium for general κ by simply

scaling the κ= 0 equilibrium. To this end conjecture that equilibrium consumption satisfies a × ct ,0,

for some scalar a. It is then immediate that then we would also have p I
t = a × p I

t ,0. But then, from

(B.9), we have that

π0 = a ×κ×
∞∑

t=0
βt p I

t ,0 (B.17)

Finally it follows from the government budget constraint that—again in our limiting self-financing

equilibrium—we must have

ε0 = a ×τy ×
∞∑

t=0
βt ct ,0 +a × D ss

Y ss
×κ×

∞∑
t=0

βt p I
t ,0

Solving this equation for a we obtain consumption and thus inflation as well as government debt in

the general sticky-price equilibrium. In particular we see that self-financing yet again obtains exactly

as in our baseline economy. We summarize these observations in the following corollary.

Corollary B.1. Consider the extended OLG-NK environment with investment. Fiscal adjustment is

never necessary in equilibrium—that is, ν → 1—if the tax response is infinitely delayed, i.e., τd → 0

or H → ∞. These two limits induce the same equilibrium paths {ct ,πt ,dt }∞t=0, and in this common

limit self-financing is sufficient to return government debt to steady state (i.e., ρd ∈ (0,1)).

B.3 More general monetary policy

Here we supplement the discussion of monetary policy in Subsection 5.3. First, we explain how we

measure the degree of self-financing when real rates are variable. Second, we investigate the model’s

determinacy regions, extending Leeper (1991). Finally, we elaborate on the connection between mon-

etary policy feedback and our analysis of more general aggregate demand relations.

Measuring the degree of self-financing when φ ̸= 0. With variable real rates, the government’s in-

tertemporal budget constraint in (19) has to be re-written as follows:

ε0 + D ss

Y ss

+∞∑
k=0

βk+1E0 [rk ] = τd

(
ε0 +

+∞∑
k=0

βk E0 [dk ]

)
+

+∞∑
k=0

τyβ
k E0

[
yk

]+ D ss

Y ss (π0 −E−1 [π0]) .

The right hand side is the same as before, while the new term on the left-hand side, D ss

Y ss

∑+∞
k=0β

k+1E0 [rk ],

captures how the time-varying real interest rate in (9) changes the costs of servicing the outstanding

public debt. We interpret this new term as analogous to the deficit shock itself and accordingly define
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PERMANENT-INCOME CONSUMERS (ω= 1) FINITE-HORIZON CONSUMERS (ω< 1)

Figure B.2: Determinacy regions forω= 1 (left panel) andω< 1 (right panel) as a function of the fiscal
and monetary policy rule coefficients τd (y-axis) and φ (x-axis).

the share of self-financing as

ν≡
∑∞

k=0τyβ
kE0

[
yk

]+ D ss

Y ss π0

ε0 + D ss

Y ss

∑+∞
k=0β

k+1E0 [rk ]
(B.18)

This reduces to the original definition when φ= 0.

Determinacy regions. We begin by providing a visual illustration of equilibrium determinacy—i.e.,

the famous Leeper (1991) regions—in our OLG model. The two panels in Figure B.2 show whether a

bounded equilibrium (i.e., the standard solution concept of Blanchard and Kahn (1980)) exists and is

unique under different assumptions on monetary policy (φ) and fiscal policy (τd in (6)), for a standard

permanent-income model (left panel) and our OLG economy (right panel).

The figure reveals that the determinacy properties of the two economies are materially different.

Results for the permanent-income model are well-known and require little explanation: equilibrium

uniqueness requires that fiscal policy is passive (τd > 1−β) and monetary policy is active (φ > 0), or

vice-versa; if both rules are active then no bounded equilibrium exists, and if both are passive then

there are multiple bounded equilibria. With discounting on the household side (i.e., ω < 1), the re-

gions of equilibrium determinacy look rather different. Perhaps most importantly, the benchmark

monetary rule of φ= 0 now induces unique bounded equilibrium for any τd , consistent with Propo-

sition 1. Intuitively, with ω < 1, determinacy comes from the fact that public debt directly enters the

aggregate demand relation. Moreover, existence comes from the fact, with τy > 0, output also directly

affects the government budget. Self-financing is now strong enough to pull debt as well as spending

towards zero, even if interest rates do not provide any further Euler equation tilting. This automatic

stabilization of government debt also shrinks the equilibrium non-existence region in the bottom
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right corner of the figure. See the discussion in Appendix A.3 for further details.

Connection between general monetary policy (9) and general aggregate demand (27). As discussed

in the main text, the cutoff φ̄ plays the same role as Assumption 2—they both make sure that the

deficit-driven Keynesian boom is large enough to play out in finite time. In fact, when φ= φ̄ or when

(28) holds with equality, the expected persistence of real value of debt (ρd in (17)) becomes 1 when fis-

cal adjustment is infinitely delayed (τd → 0). This then prevents the existence of a bounded complete

self-financing equilibrium.

To further elaborate on this connection we note that, when D ss

Y ss = 0, it is possible to re-write the

OLG model’s aggregate demand relation under a general monetary reaction in a way similar to the

generalized aggregate demand relation (27) in Section 5.1. Specifically, aggregating (10) and using as-

set market clearing, monetary policy (30) and D ss

Y ss = 0, we reach the following description of aggregate

consumption

ct =
(
1−βω)

dt +
(
1−βω−φσβω)

Et

[+∞∑
k=0

(
βω

)k yt+k

]
− (

1−βω)
Et

[+∞∑
k=0

(
βω

)k tt+k

]
, (B.19)

which can be nested by a general aggregate demand equation:

ct = My

(
yt +Et

[+∞∑
k=1

(βω)k yt+k

])
−Mt

(
tt +Et

[+∞∑
k=1

(βω)k tt+k

])
+Md dt , (B.20)

with the only slight difference from (27) being that the MPC out of income My is now allowed to differ

from the MPC out of taxes Mt . This difference however is immaterial: we can generalize the proof of

Theorem 2 to get a more general version of Assumption 2, requiring that

Md + 1−β
τy

(
My −τy Mt

)(
1+

+∞∑
k=1

(βω)k

)
> 1−β

τy
. (B.21)

(B.20) nests (B.19) with My = 1−βω−φσβω and Md = Mt = 1−βω. We see that, when φ= φ̄ in (D.31),

(B.21) holds with equality. This formalizes our claim that the cutoff φ̄ indeed plays the same role as

Assumption 2 in Section 5.1.

B.4 Distortionary tax hikes

We begin by showing how the equilibrium relations of the model change with time-varying distor-

tionary taxes. We then discuss implications for our limiting self-financing equilibria.
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Environment. With time-varying distortionary taxes the optimal labor supply relation becomes

(1−τy,t )Wt =
χ

∫ 1
0 L

1
ϕ

i ,t di∫ 1
0 C−1/σ

i ,t di
(B.22)

Log-linearizing, we find that

wt − 1

σ
ct − 1

1−τy
τ̂y,t = 1

ϕ
ℓt (B.23)

where τ̂t ≡ τy,t −τy . Next note that the firm optimal pricing relationship is still

πt = κ̃wt +βEt [πt+1] (B.24)

Combining (B.23), (B.24), and the modified baseline fiscal (32), we obtain

πt = κ

yt + 1(
1
ϕ
+ 1
σ

)(
1−τy

)τd

︸ ︷︷ ︸
≡ζ

dt

+βEt [πt+1] , (B.25)

where κ= κ̃
(

1
ϕ
+ 1
σ

)
. All other equilibrium relations of the model are unaffected.

Self-financing result. Note that, as τd → 0, we obtain that ζ→ 0 for all t . It thus follows that the equi-

librium characterization of Theorem 1 for the self-financing limit applies without any change to the

alternative economy in which fiscal adjustment is distortionary. Intuitively, since the adjustment is

not necessary in equilibrium, it is immaterial whether the adjustment would have been distortionary

or lump-sum.

B.5 Government spending

The government spending policy experiment was already described in Section 5.5. The only missing

ingredient for equilibrium characterization is the adjusted NKPC. By standard arguments (e.g., see

Galí, 2008), it is now given as

πt = κyt +βEt [πt+1]−κ
1
σ

1
ϕ
+ 1
σ

g t

Intuitively, the last term reflects the fact that, if higher output comes from higher government pur-

chases (rather than higher consumption), then household labor supply is larger for standard wealth

effects reasons—i.e., a negative cost-push shock. Since the overall analytics of the self-financing result
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BASELINE FISCAL POLICY

ALTERNATIVE FISCAL POLICY

Figure B.3: Top panel: impulse responses of output yt , government debt dt , and the total self-
financing share ν to the government spending shock ε0 as a function of τd . Bottom panel: same
as above, but as a function of H .

with government purchases are exactly analogous to our baseline “stimulus checks” case, we do not

repeat those derivations here and instead just provide a visual illustration of the self-financing result.

We summarize our results in Figure B.3—the government spending analogue of Figure 1. We em-

phasize two main takeaways. First, as τd → 0 or H → ∞, we indeed again converge to a complete

self-financing limit. Second, even immediately tax-financed fiscal purchases actually have a positive
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spending multiplier, and thus the share of self-financing ν for τd = 1 (top panel) and H = 0 (bottom

panel) is already strictly positive.38

C Quantitative analysis

This section supplements our quantitative analysis in Section 6. We: provide some missing details on

the specification of our spender-OLG hybrid model in Appendix C.1; discuss alternative calibration

strategies in Appendix C.2; review empirical evidence on fiscal adjustment in Appendix C.3; present

results from a HANK model and a model with cognitive discounting in Appendices C.4 and C.5; and

consider model variants with more flexible prices and more aggressive monetary reactions in Appen-

dices C.6 and C.7.

C.1 Further details on the hybrid model

We first elaborate on the model environment and discuss in greater detail the model’s implications

for household consumption behavior, contrasting it in particular with the predictions of quantitative

HANK-type models.

Model. The only change relative to our baseline model of Section 2 is that we generalize the house-

hold block to also feature a margin µ of spenders—that is, households who do not hold any assets and

immediately spend any income they receive. The remaining fraction 1−µ of households are exactly

as described in Section 2.1. Both groups of households receive labor income as well as dividends and

pay taxes, but only the OLG block holds government bonds.

We will make assumptions ensuring that both groups of households receive the same labor and

dividend income, pay the same taxes (up to a between-group steady-state transfer), and have identical

steady-state consumption. First, we assume that unions assign identical hours worked to both groups,

and that dividends also accrue equally to both. Second, we assume that the government in lump-sum

fashion redistributes between the two groups to ensure identical steady-state consumption; given

that government bonds are held by the OLG block, this will generally require lump-sum transfers to

spenders. Under those assumptions, it is first of all immediate that the supply block of the economy—

notably (14)—is unchanged. Next, the demand block of the economy generalizes (26) as follows:

ct = (1−βω) ·dt +
[
µ+ (1−µ)(1−βω)

] ·((yt − tt )+ (1−µ)Et

[ ∞∑
k=1

(ωβ)k (
yt+k − tt+k

)])
. (C.1)

38As discussed in Section 5.5, if prices were rigid, then in this immediately tax-financed case ν= νy = τy . With partially
sticky prices the initial inflation further increases the degree of self-financing.
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Replacing (26) by (C.1) is the only difference between our baseline OLG economy and the generalized

hybrid model. Relative to (26), the most important change in (C.1) is that we allow the MPC out of

income to be larger than that out of wealth. As we discuss next, this minimal departure from our

baseline OLG model is all that is needed to ensure (approximate) consistency with consumption-

savings behavior even in quantitative HANK-type models.

Household consumption-savings behavior. By our discussion in Appendix A.4 we know that the

role of the household consumption-savings decision in driving our self-financing result is fully gov-

erned by the matrix of intertemporal marginal propensities to consume. The left top panel of Figure

5 provides a visual illustration of this matrix in our spender-OLG hybrid model, as implied by the

generalized demand block (C.1).

The figure plots the spending response over time to (anticipated) income gains at different dates.

We emphasize two key takeaways. First, the response to a date-0 income gain—that is, the first col-

umn of M—agrees closely with prior empirical evidence (Fagereng, Holm and Natvik, 2021), as al-

ready discussed in Section 6.1. Second, the higher-order columns are qualitatively and quantitatively

similar to those implied by quantitative HANK-type models. This observation has been made previ-

ously in Auclert, Rognlie and Straub (2018) and Wolf (2021a). For our purposes, the important take-

away is that our analysis is indeed quantitatively relevant—as far as our question of self-financing is

concerned, our model will have very similar predictions as richer quantitative HANK-type models.

We further illustrate this observation in Appendix C.4.

C.2 Alternative calibration approaches for the household block

For our baseline analysis in Section 6 we discipline our model’s departure from permanent-income

behavior by requiring consistency with empirical evidence on the level and slope of (short-run) house-

hold consumption behavior lump-sum income receipt, as in Auclert, Rognlie and Straub (2018) and

Wolf (2021a). We here instead discuss two different approaches: one based on farther-out spending

responses, and one based on long-run price elasticities of household asset demand.

Calibration via tail MPCs. The calibration strategies were already discussed in Section 6.2: the “lower

bound” hybrid model matches the impact MPC and the estimated lower bound of the five-year cumu-

lative MPC, while the generalized three-type model is parameterized to match the five-year cumula-

tive MPC path as well as possible, in a standard least-squares sense. For the “lower bound” calibration

of the hybrid model we set µ= 0.17 and ω= 0.94; all other parameters are as in Table 1. For the three-

type model, we setω1 = 0.97 andω2 = 0.83, with the fractions of the two groups equal to χ1 = 0.22 and

χ2 = 0.63. The residual fraction 1−χ1 −χ2 are hand-to-mouth.
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Calibration via asset supply elasticities. For this approach we combine evidence on level MPCs

with long-run price elasticities of household asset demand. This calibration strategy is promising

because models with permanent-income savers invariably imply a (counterfactual) infinite elasticity

of household asset demand (e.g., Kaplan and Violante, 2018).

Our main building block result for this calibration approach is Proposition C.1. We there give the

long-run elasticity of household asset demand as a function of model primitives.

Proposition C.1. Consider the spender-OLG hybrid model. Let η denote the long-run interest rate

elasticity of household asset demand—that is, the long-run response of asset demand to a permanent

change in real interest rates. It is given as

η = (1−µ)× σ

1−β ×
(

1

1−ω − 1

1−βω
)

(C.2)

Empirical work suggests a range for η of around 1.25 to 35 (see Moll, Rachel and Restrepo, 2022).

Setting β = 0.99, σ = 1, and requiring the model to generate an impact MPC of 22 per cent (all as in

our baseline calibration), we find ω ∈ [0.21,0.85]. Our baseline calibration lies somewhat beyond the

upper end of this range and is thus conservative.

C.3 Empirical evidence on fiscal adjustment

Notable prior work that has estimated fiscal financing rules and thus in particular the speed of fiscal

adjustment in response to deficits includes Galí, López-Salido and Vallés (2007), Bianchi and Melosi

(2017), and Auclert and Rognlie (2018). Auclert, Rognlie and Straub (2020) (Appendix D.1) survey this

literature and conclude that the annual tax adjustment parameter—φ in their notation—lies between

0.015 and 0.3, with their preferred estimate equal to 0.1. Our displayed values for τd correspond to

the quarterly analogues of these values. We note that all of our values strictly exceed r̄ and thus cor-

respond to “passive” fiscal rules in the terminology of Leeper (1991).

C.4 A full HANK model

This section provides a sketch of the quantitative HANK model that we use to numerically illustrate

the generality of our self-financing result. The discussion is brief because the household block of the

model is essentially borrowed from Wolf (2021a).

Model sketch & calibration. The model economy is exactly as in Section 2, but with one twist: the

OLG household block is replaced by a unit continuum of households i ∈ [0,1] that face uninsurable
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income risk. Households have preferences

Et

[ ∞∑
k=0

βt [
u(Ci ,t+k )−ν(Li ,t+k )

]]

Households save and borrow (subject to a constraint) in a nominally risk-free bond, as in our baseline

model. They receive labor and dividend income in proportion to their (stochastic) productivity, pay

a proportional tax τy on that income, and finally pay additional lump-sum uniform taxes T̃t . We can

thus write the household budget constraint in real terms as

Ci ,t +Di ,t+1 = (1−τy )ei ,t Yt − T̃t + It−1

Πt
Di ,t , Di ,t+1 ≥ D

Whenever possible we calibrate the model exactly as our baseline model. The remaining HANK-

specific parameters are: the income risk process; the borrowing constraint; and the discount factor.

The income risk process is taken from Kaplan, Moll and Violante (2018), just ported to discrete time

as in Wolf (2021b). The borrowing constraint D is set to zero, and the discount factor β is backed out

residually to clear the asset market. Finally, we need to make one more change relative to our baseline

model: in the model set-up as described so far, tax revenue τy ×Y ss would far exceed debt servic-

ing costs, so the government would make a substantial uniform transfer, thus materially dampening

household MPCs. We instead set the steady-state transfer share as in the data (following Kaplan, Moll

and Violante, 2018, which gives T̃ ss/Y ss = 0.06), and then clear the government budget by additionally

allowing for positive (and time-invariant) government purchases.

Results. We use the quantitative HANK model to revisit our numerical exercises in Section 6.2. Ex-

actly as done there, we here compute the aggregate effects of one-off fiscal stimulus for different as-

sumptions on the delay in fiscal financing. Results are reported in Figure C.1.

Our results closely echo those of Section 6.2. We emphasize two main takeaways. First, Figure C.1

is qualitatively very similar to Figure 4: output and inflation responses as well as the share of self-

financing ν are all increasing in the delay in fiscal adjustment (i.e., decreasing in τd ). Furthermore,

as τd → 0, we again converge to a full self-financing limit. We have also verified numerically that,

for each τd ∈ [0,1] considered in construction of Figure C.1, the constructed equilibrium is (locally)

unique, again echoing our baseline analysis. Second, the two figures are also quantitatively similar:

for our three values of τd taken from prior work, the impulse responses of output and inflation as well

as the share of self-financing ν are very similar to the spender-OLG hybrid model. This conclusion

confirms prior work arguing that, as far the dynamics of macroeconomic aggregates are concerned,

spender-OLG hybrid models and fully specified HANK models look extremely similar (Auclert, Rognlie

and Straub, 2018; Wolf, 2021a)
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Figure C.1: Impulse responses of output yt , inflation πt , and the total self-financing share ν to the
deficit shock ε0 as a function of τd , for the quantitative HANK model. The left and middle panels
show the impulse responses for the three particular values of τd discussed in Section 6.1. In the right
panel these three points are marked with circles.

C.5 The effects of cognitive discounting

Figure C.2 repeats our analysis of Section 6.2 in a variant of our spender-OLG hybrid model with cog-

nitive discounting. To illustrate the effects of discounting as clearly as possible we consider a rather

significant degree of discounting (θ = 0.25).

The figure illustrates the two effects described in Section 5.1. First, for τd close to one, the Key-

nesian boom and thus the share of self-financing ν are larger than in our baseline model. Intuitively,

in this case, the strong discounting of the not-so-distant tax hike meaningfully amplifies the initial

boom. Second, for τd close to one, the self-financing limit is approached somewhat more slowly,

reflecting a weakening of the intertemporal Keynesian cross.

C.6 Self-financing with more flexible prices

Figure C.3 repeats our analysis of Section 6.2 in a variant of the baseline model with more flexible

prices, setting κ= 0.1—a value at the large end of recent empirical evidence and arguably more rele-

vant for the inflationary post-covid environment. With more flexible prices, a non-trivial share—here

around 20 per cent—of self-financing comes from adjustments in prices rather than quantities.
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Figure C.2: Impulse responses of output yt , inflation πt , and the total self-financing share ν to the
deficit shock ε0 as a function of τd , with cognitive discounting. The left and middle panels show the
impulse responses for the three particular values of τd discussed in Section 6.1. In the right panel
these three points are marked with circles.

Figure C.3: Impulse responses of output yt , inflation πt , and the total self-financing share ν to the
deficit shock ε0 as a function of τd , with more flexible prices. The left and middle panels show the
impulse responses for the three particular values of τd discussed in Section 6.1. In the right panel
these three points are marked with circles.
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Figure C.4: Total self-financing share ν in response to the deficit shock ε0 as a function of τd , for
the standard Taylor-type monetary policy rule it = ϕπt , with ϕ ∈ {1.25,1.5,2}. The red areas indicate
(bounded) equilibrium non-existence.

C.7 Active monetary reaction

For our final extension we consider a variant of the baseline quantitative model in which the monetary

authority instead follows a standard Taylor-type rule, setting

it =ϕπt

We considerϕ ∈ {1.25,1.5,2}—a range of values, all corresponding to active monetary policy responses

in the classical terminology of Leeper (1991). The three panels in Figure C.4 show the self-financing

share ν as a function for τd for the three displayed values of ϕ. In the middle and right panels the red

regions indicate equilibrium non-existence for the underlying policy mix.

The figure illustrates the robustness of our conclusions to active monetary policy reactions. First,

for a moderate monetary response (ϕ= 1.25), complete self-financing is still possible, consistent with

Theorem 3. Compared to our baseline exercises in Section 6.2, the more aggressive monetary reaction

delays the fiscal boom, so ν is strictly smaller for any τd > 0, though still converging to 1 as τd → 0+.

Second, for even stronger monetary reactions (ϕ= 1.5 or ϕ= 2), existence of a bounded equilibrium

requires that τd is sufficiently far above 0, as indicated by the shaded red areas. We nevertheless

see that, for small values of τd outside of these non-existence regions, there can still be meaningful

degrees of self-financing, even for a central bank that quite aggressively leans against the fiscal boom.
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D Proofs and auxiliary lemmas

D.1 Proof of Proposition 1

Note that we restrict that ω ∈ (0,1), τy ∈ (0,1), and τd ∈ [0,1). We first write (12) recursively:

yt −F1 · (dt +εt ) = (1−βω)F2 · yt +βωEt
[

yt+1 −F1 · (dt+1 +εt+1)
]

= (1−βω)F2 · yt +βωEt

[
yt+1 −F1 · 1

β

[
(1−τd ) (dt +εt )−τy yt

]]
.

After rearranging terms and using the formula of F1 and F2 (as stated after (12)), we have

yt = (1−ω (1−τd ))F1

1−ωτyF1 − (1−βω)F2
(dt +εt )+ βω

1−ωτyF1 − (1−βω)F2
Et

[
yt+1

]
=

(1−βω)(1−ω)
βω (1−τd )

1+ (1−βω)(1−ω)
βω τy

(dt +εt )+ 1

1+ (1−βω)(1−ω)
βω τy

Et
[

yt+1
]

.

Applying period-t expectations Et [·] to (15), we have

(
Et [dt+1]

Et
[

yt+1
] )

=
 1−τd

β
−τy

β

− (1−βω)(1−ω)(1−τd )
βω 1+ (1−βω)(1−ω)

βω τy

(
dt +εt

yt

)
(D.1)

The two eigenvalues of the system are given by the solutions of

λ2 −λ
(

1

β
(1−τd )+1+ 1−βω

βω
τy (1−ω)

)
+ 1

β
(1−τd ) = 0,

with

λ1 =

(
1
β (1−τd )+1+ 1−βω

βω τy (1−ω)
)
+

√(
1− 1

β (1−τd )− 1−βω
βω τy (1−ω)

)2 +4 1−βω
βω τy (1−ω)

2
(D.2)

>
(

1
β (1−τd )+1+ 1−βω

βω
τy (1−ω)

)
+

∣∣∣1− 1
β (1−τd )− 1−βω

βω
τy (1−ω)

∣∣∣
2

≥ 1

and

λ2 =

(
1
β (1−τd )+1+ 1−βω

βω τy (1−ω)
)
−

√(
1− 1

β (1−τd )− 1−βω
βω τy (1−ω)

)2 +4 1−βω
βω τy (1−ω)

2
(D.3)

<
(

1
β (1−τd )+1+ 1−βω

βω τy (1−ω)
)
−

∣∣∣ 1
β (1−τd )+ 1−βω

βω τy (1−ω)−1
∣∣∣

2
≤ 1,
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with λ2 > 0 too since λ1λ2 = 1
β (1−τd ) > 0. Let

(
1,χ2

)′
denote the eigenvector associated with λ2,

where

λ2 = 1

β

(
1−τd −τyχ2

)
and χ2 =

(1−βω)(1−ω)
βω (1−τd )

1+ (1−βω)(1−ω)
βω

τy −λ2

> 0. (D.4)

This means that any bounded equilibrium path
{
dt , yt

}+∞
t=0 of (D.1)39 takes the form of

yt =χ (dt +εt ) and Et [dt+1] = ρd (dt +εt ) ,

where χ and ρd are uniquely given by

χ=χ2 > 0 and ρd =λ2 ∈ (0,1) . (D.5)

In other words, the equilibrium takes the form of (17) and satisfies (18).40

To prove equilibrium uniqueness, note that the total amount of nominal public debt outstanding

at the start of t = 0, B0 = B ss , is given. From (14) and (16), we know d0 is uniquely pinned down by

d0 =−D ss

Y ss
π0 =−κD ss

Y ss

+∞∑
k=0

βkE0
[

yk
]=−κD ss

Y ss

χ

1−βρd
(d0 +ε0) =−

κD ss

Y ss
χ

1−βρd

1+κD ss

Y ss
χ

1−βρd

ε0. (D.6)

Similarly, for t ≥ 1,

dt −Et−1 [dt ] =−D ss

Y ss (πt −Et−1 [πt ]) =−κD ss

Y ss

+∞∑
k=0

βk (
Et

[
yt+k

]−Et−1
[

yt+k−1
])

=−κD ss

Y ss

χ

1−βρd
(dt −Et−1 [dt ]+εt ) =−

κD ss

Y ss
χ

1−βρd

1+κD ss

Y ss
χ

1−βρd

εt .

This pins down the unique bounded equilibrium path of
{
πt ,dt , yt

}+∞
t=0 with (14) and (17).

D.2 Proof of Lemma 1

The result follows directly from two facts in the proof of Proposition 1 and Theorem 1. First, under

fiscal rule (6), ν decreases in τd , limτd→0+ ν→ 1, and limτd→1− ν→ 0. Second, under fiscal rule (7), ν

increases in H , ν= 0 with H = 0, and limH→∞ν→ 1.

39Boundedness means that limk→+∞Et [dt+k ] and limk→+∞Et
[

yt+k
]

are bounded for any t , dt + εt , and yt , similar to
Blanchard and Kahn (1980).

40To see the first part of (18), combine (12) with (17).
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D.3 Proof of Theorem 1

We start with the case based on the baseline fiscal policy (6). We begin by considering an alternative

economy with rigid prices (κ= 0) but otherwise identical to the baseline economy. Let ν′ denote the

self financing share in this alternative economy, which similarly to (21) is given as

ν′ ·ε0 = ν′y ·ε0 ≡
∞∑

k=0
τyβ

kE0
[

yk
]

.

Note that in this alternative economy all self-financing comes from tax base changes. In particular,

there is no t = 0 price level jump and so the real value of public outstanding at t = 0, d0 = b0 = 0 is

pre-determined. From (17) and (21) we know that

ν′ = τy
χ

1−βρd
. (D.7)

Now, consider the general case with κ≥ 0. From NKPC (14) and the definitions in (20) – (21), we have

νp = κD ss

Y ss

τy
νy =

κD ss

Y ss

τy +κD ss

Y ss

ν (D.8)

From the formula of d0 (16), we know

d0 =−νpε0 and νy =
(
1−νp

)
ν′.

Together, we have

ν= ν′

τy

τy+κDss
Y ss

+ κDss
Y ss

τy+κDss
Y ss

ν′
νy =

τy

τy+κDss
Y ss

ν′

τy

τy+κDss
Y ss

+ κDss
Y ss

τy+κDss
Y ss

ν′
, and νp =

κDss

Y ss

τy+κDss
Y ss

ν′

τy

τy+κDss
Y ss

+ κDss
Y ss

τy+κDss
Y ss

ν′
. (D.9)

From (18), we know that
χ

1−βρd
= χ

τd +τyχ
. (D.10)

From (D.3) and (D.5), we know

ρd =λ2 = f (a,b) ≡ a +b +1−
√

(a +b −1)2 +4b

2
(D.11)
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where a = 1
β (1−τd ) > 0 and b = 1−βω

βω τy (1−ω) > 0. Since ∂ f
∂a = 1

2 − (a+b−1)

2
p

(a+b−1)2+4b
> 0,we know that ρd

decreases with τd . From (D.4) and (D.5), we then know χ=
(1−βω)(1−ω)

βω (1−τd )

1+ (1−βω)(1−ω)
βω τy−ρd

also decreases in τd . From

(D.10), we know χ
1−βρd

decreases in τd . Finally, from (D.7) and (D.9), we know ν decreases in τd . This

finishes the proof of Part 1.

For Part 2, from (D.3) and (18), we know that ρd and χ are continuous in τd ∈ [0,1), and

ρfull
d ≡ lim

τd→0+
ρd =

(
1
β +1+ 1−βω

βω τy (1−ω)
)
−

√(
1− 1

β −
1−βω
βω τy (1−ω)

)2 +4 1−βω
βω τy (1−ω)

2
(D.12)

<
1
β
+1+ 1−βω

βω
τy (1−ω)−

∣∣∣ 1
β
+ 1−βω

βω
τy (1−ω)−1

∣∣∣
2

≤ 1

χfull ≡ lim
τd→0+

χ= 1−βρfull
d

τy
> 0 (D.13)

From (D.10), we know limτd→0+
χ

1−βρd
= 1

τy
. From (D.7) and (D.9), we know limτd→0+ ν = 1. Finally,

limk→∞Et [dt+k ] → 0 follows directly from ρfull
d < 1.

Now we turn to the alternative fiscal policy rule in (7), for which we use the equilibrium character-

ization in Appendix A.2. For the case with rigid prices (κ= 0), one can see from (A.11) that ν′ increases

in H , which proves Part I. For Part II and to find limH→∞ν′, first note that, from (A.9),
{
χk

}∞
k=0 is a

bounded, increasing sequence. As a result, there exists χfull,NM such that limk→∞χk = χfull,NM and

χfull,NM = g
(
χfull,NM

) ∈ (
0, 1

τy

)
. From (A.11), we know that limH→∞ν′ = 1. From (A.10), we know that

limH→∞E0 [dH ] = 0. From (D.4) and (D.5), we also know that g
(
χfull

) = χfull where χfull defined in

(D.13) parametrizes the output response in the complete self-financing limit (τd → 0) with the base-

line fiscal rule (6). From the definition of g (·) in (A.8), we know that there is a unique χ> 0 such that

g
(
χ
) = χ when ω < 1 and τd ∈ (0,1) . As a result, χfull,NM = χfull < 1

τy
and limk→+∞χk = χfull. That is,

these two limits (τd → 0 and H →∞) share the same equilibrium path. Finally, for the general case

with κ≥ 0, the desired result follows directly from the rigid price case together with (A.13) and (D.9).

D.4 Properties of the consumption function

Lemma D.1. Let M denote the the matrix of intertemporal MPCs corresponding to our consumption

function (11). Then, if and only if ω< 1 :

1. As ℓ increases, one unit anticipated income changes at date t +ℓ (in terms of present value at t)

have a vanishing effect on consumer demand at date t :

lim
ℓ→∞

β−ℓMt ,t+ℓ = 0
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2. As ℓ increases, one unit income changes at date t have a vanishing effect on consumer demand at

date t +ℓ :

lim
ℓ→∞

Mt+ℓ,t = 0

We prove the two parts of the lemma in turn. The proof leverages results on the properties of the

intertemporal MPC matrix M in OLG models from Wolf (2021a).

1. The proof is by induction. First of all we have

M0,ℓβ
−ℓ = (1−βω)ωℓ

Thus the claim holds for t = 0. Now suppose the claim holds for some t −1 (where t ≥ 1), and

consider horizon t . Here we have, for ℓ≥ 0,

Mt ,t+ℓβ−ℓ =−(1−βω)2βt−1ωt+ℓ+1 +Mt−1,t−1+ℓβ−(ℓ−1)β−1

As ℓ→∞ the first term converges to zero since ω < 1 while the second term converges to zero

by the inductive assumption, completing the argument.

2. The proof is again by induction. Begin again with t = 0. Here we have

Mℓ,0 = (1−βω)ωℓ

and so the statement holds. Now suppose it holds for some t − 1 (where t ≥ 1), and consider

horizon t . Here we have, for ℓ≥ 0,

Mt+ℓ,t =−(1−βω)2βt−1ω2t+ℓ−1 +Mt−1+ℓ,t−1

The first term converges to zero as ℓ→ ∞, for any t . The second term furthermore also con-

verges to zero (by the inductive hypothesis), completing the argument.

D.5 Proof of Proposition 2

For part 1 of the Proposition, we start with the case of the baseline fiscal policy (6). From (D.11), we

know that ρd is independent of the degree of price flexibility κ and the steady-state debt-to-GDP ratio
D ss

Y ss . From (18) and (D.7), we know that ν′ is independent of the degree of price flexibility κ and the

steady-state debt-to-GDP ratio D ss

Y ss . From (D.9), we know that ν is increasing in the degree of price

flexibility κ and steady-state debt-to-GDP ratio D ss

Y ss .
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Now we turn to part 1 with the alternative fiscal policy in (7), for which we use the equilibrium

characterization in Appendix A.2. From (A.7) and (A.11), we know that ν′ is independent of the degree

of price flexibility κ and the steady-state debt-to-GDP ratio D ss

Y ss . From (A.13), we know that ν increases

in the degree of price flexibility κ and the steady-state debt-to-GDP ratio D ss

Y ss .

Part 2 of the Proposition follows directly from (22), which holds for both fiscal policies and gives

νy =
τy

τy +κD ss

Y ss

×ν and νp = κD ss

Y ss

τy +κD ss

Y ss

×ν.

D.6 Proof of Proposition 3

We start with the case of the baseline fiscal policy (6). From (D.11), we know

ρd = a +b +1−
√

(a +b +1)2 −4a

2
= 2a

a +b +1+
√

(a +b +1)2 −4a
,

which decreases in b = 1−βω
βω τy (1−ω) . As a result, ρd decreases in τy . From the second part of 18, we

know that τyχ increases with τy . From (D.7) and D.10, we know that, when κ= 0, ν= τyχ

τd+τyχ
increases

with τy .

Now we turn to part 1 with the alternative fiscal policy in (7), for which we use the equilibrium

characterization in Appendix A.2. From (A.7), we know that

τyχH−t =
(1−βω)(1−ω)

βω
τy + χH−t−1

β
τy

1+ (1−βω)(1−ω)
βω

τy + χH−t−1
β

τy

=G
(
τy ,χH−t−1τy

)
,

where

G
(
x, y

)= (1−βω)(1−ω)
βω x + 1

β y

1+ (1−βω)(1−ω)
βω

x + 1
β

y

increases in x ∈ (0,1) and y > 0. Together with (A.5), we know that τyχk increases with τy for each

k ≥ 1. Together with (A.11), when κ= 0, ν increases with τy .

D.7 Proof of Proposition 4

Consider the baseline fiscal policy (6). From (D.11), we know

ρd = a +b +1−
√

(a +b +1)2 −4a

2
= 2a

a +b +1+
√

(a +b +1)2 −4a
,
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where a = 1
β (1−τd ) ∈ (0,1) and b = 1−βω

βω τy (1−ω) > 0. For the second part of the equation, we know

that ρd decreases in b = 1−βω
βω τy (1−ω) .

From the second half of (18), we know χ decreases in ω. From, (D.7), (D.9) and (D.10), we know

that ν decreases in ω. This proves Part 1.

For Part 2, from Theorem 1, we know that ρfull
d < 1 for any ω < 1. From (D.12), we know that

limω→1ρ
full
d =

(
1
β+1

)
−

√(
1− 1

β

)2

2 = 1.

D.8 Proof of Theorem 2

We start with the baseline fiscal policy (6). We focus on a bounded equilibrium similar to (17), taking

the form of

yt =χd dt +χεεt , Et [dt+1] = ρd dt +ρεεt with χd ,χε > 0, ρd ∈ (0,1). (D.14)

For (D.14) to be an equilibrium, it needs to satisfy (15) and (27). For (D.14) to satisfy to the government

budget (15), we need

ρd = 1

β

(
1−τd −τyχd

)
and ρε = 1

β

(
1−τd −τyχε

)
. (D.15)

For (D.14) to satisfy aggregate demand (27) (together with market clearing ct = yt ), we need

χd = Md +My
[(

1−τy
)
χd −τd

](
1+δ

+∞∑
k=1

(
βωρd

)k

)
=

Md −τd My

(
1+ δβωρd

1−βωρd

)
1−My

(
1−τy

)(
1+ δβωρd

1−βωρd

) . (D.16)

and

χε = My

(
1+

((
1−τy

)
χε−τd +δ((

1−τy
)
χd −τd

)+∞∑
k=1

(βω)kρk−1
d ρε

))
. (D.17)

(D.15) and (D.16) together mean that ρd needs to be the root of the following equation:

h
(
ρd ;τd

)= 1−τd −βρd

τy
−

Md −τd My

(
1+ δβωρd

1−βωρd

)
1−My

(
1−τy

)(
1+ δβωρd

1−βωρd

) = 0,

with limτd→0+ h (0;τd ) = 1
τy

− Md
1−My (1−τy ) ≥ 0 because τy > 0, My ∈ (0,1) and My ≥ Md .

When Assumption 2 holds, we first show that there existsρfull
d ∈ [0,1) such that limτd→0+ h

(
ρfull

d ;τd
)=
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0. There are two cases. First, My
(
1−τy

)(
1+ δβω

1−βω
)
> 1. In this case, there exists ρ̄ ∈ (0,1) such that

My
(
1−τy

)(
1+ δβωρ̄

1−βωρ̄
)
= 1,

and limτd→0+,ρd→(ρ̄)− h
(
ρd ;τd

) =−∞. As a result, there exists a unique ρfull
d ∈ [0,1) such that we have

limτd→0+ h
(
ρfull

d ;τd
)= 0.41

Second, My
(
1−τy

)(
1+ δβω

1−βω
)
< 1. In this case,

lim
τd→0+

h (1;τd ) = 1−β
τy

− Md

1−My
(
1−τy

)(
1+ δβω

1−βω
) < 0

from Assumption 2. As a result, there exists a unique ρfull
d ∈ [0,1) such that limτd→0+ h

(
ρfull

d ;τd
)= 0.

Since h
(
ρd ;τd

)
is continuous, we know that, for each τd in a right neighborhood of 0, there exists

a unique ρd (τd ) ∈ [0,1) such that h
(
ρd (τd ) ;τd

) = 0 and limτd→0+ ρd (τd ) = ρfull
d ∈ [0,1). For each τd

in this neighborhood, given ρd (τd ) , one can find ρε (τd ) and χd (τd ) ,χε (τd ) > 0 from (D.15) – (D.17)

to constitute the unique bounded equilibrium in the form of (D.14). Next note that from bound-

edness we have limτd→0+
τd

(
ε0+∑∞

k=0β
kE0[dk ]

)
ε0

= 0 and limτd→0+ ν = 1, using also (19) and (20). Finally,

limk→∞Et [dt+k ] → 0 follows directly from ρfull
d ∈ [0,1). This finishes the proof with the baseline fiscal

policy (6).

We now turn to the case with (7). Together with market clearing ct = yt , we first write the aggregate

demand in (27) recursively

yt = Md

1−My
dt −

My

1−My
tt +δβω

My

1−My
Et

[
yt+1 − tt+1

]+βωEt

[
yt+1 − Md

1−My
dt+1 +

My

1−My
tt+1

]
= Md

1−My
dt −

My

1−My
tt +δβω

My

1−My
Et

[
yt+1 − tt+1

]+βωEt

[
yt+1 +

My

1−My
tt+1

]
−ω Md

1−My
(dt − tt )

= Md (1−ω)

1−My
dt −

My −ωMd

1−My
tt +βω

(
1− (1−δ) My

1−My

)
Et

[
yt+1

]+βω My

1−My
(1−δ)Et [tt+1] . (D.18)

From (7), we know that tt = dt for all t ≥ H . As a result, dt+1 = 0 for all t ≥ H . Similar to the argument

in Appendix A.2, we can then focus on the case that yt = dt = 0 for t ≥ H +1. At t = H , from (D.18), we

have

yH = −(
My −Md

)
1−My

dH =χ0dH with χ0 =
−(

My −Md
)

1−My
. (D.19)

Similar to the main analysis in Appendix A.2, we will now use (D.18) to find the equilibrium path of

41Note that, for ρd ∈ (
ρ̄,1

)
, limτd→0+

Md−τd My

(
1+ δβωρd

1−βωρd

)
1−My (1−τy )

(
1+ δβωρd

1−βωρd

) < 0 and so limτd→0+ h
(
ρd ;τd

)> 0.

79



{
yt ,dt

}H−1
t=0 through backward induction. At t = H −1, from (7) and (D.18)

yH−1 =
Md (1−ω)

1−My

1+τy
My−ωMd

1−My

dH−1 +βω

(
1−(1−δ)My

1−My

)
χ0 + My (1−δ)

1−My

1+τy
My−ωMd

1−My

dH

=
Md (1−ω)

1−My

1+τy
My−ωMd

1−My

dH−1 +ω

(
1−(1−δ)My

1−My

)
χ0 + My (1−δ)

1−My

1+τy
My−ωMd

1−My

(
dH−1 −τy yH−1

)

yH−1 =
Md (1−ω)

1−My
+ω

[(
1−(1−δ)My

1−My

)
χ0 + My (1−δ)

1−My

]
1+τy

My−ωMd

1−My
+ωτy

[(
1−(1−δ)My

1−My

)
χ0 + My (1−δ)

1−My

]dH−1

=χ1dH−1, (D.20)

with

χ1 =
Md (1−ω)

1−My
+ω

[
−δMy (1−Md )+Md (1−My )

(1−My )2

]
1+ My−ωMd

1−My
τy +ωτy

[
−δMy (1−Md )+Md (1−My )

(1−My )2

]

=
Md (1−ω)

1−My
+ ωMy

1−My

(
Md
My

−δ1−Md
1−My

)
1+ My−ωMd

1−My
τy + ωMy

1−My

(
Md
My

−δ1−Md
1−My

)
τy

. (D.21)

For 1 ≤ t ≤ H −2, from (7) and (D.18),

yt =
Md (1−ω)

1−My
dt

1+ My−ωMd

1−My
τy

+βω
1−(1−τy )(1−δ)My

1−My

1+ My−ωMd

1−My
τy

Et
[

yt+1
]

=
Md (1−ω)

1−My
dt

1+ My−ωMd

1−My
τy

+ω
1−(1−τy )(1−δ)My

1−My

1+ My−ωMd

1−My
τy

(
dt −τy yt

)
χH−t−1

=
Md (1−ω)

1−My
+ω

(
1−(1−τy )(1−δ)My

1−My

)
χH−t−1

1+ My−ωMd

1−My
τy +ω

(
1−(1−τy )(1−δ)My

1−My

)
τyχH−t−1

dt

=χH−t dt with χH−t =
Md (1−ω)

1−My
+ω

(
1−(1−τy )(1−δ)My

1−My

)
χH−t−1

1+ My−ωMd

1−My
τy +ω

(
1−(1−τy )(1−δ)My

1−My

)
τyχH−t−1

(D.22)
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Finally, for t = 0, from (7) and (D.18), we know

y0 =
Md (1−ω)

1−My
d0 + My−ωMd

1−My
ε0

1+ My−ωMd

1−My
τy

+βω
1−(1−τy )(1−δ)My

1−My

1+ My−ωMd

1−My
τy

E0
[

y1
]

=
Md (1−ω)

1−My
d0 + My−ωMd

1−My
ε0

1+ My−ωMd

1−My
τy

+ω
1−(1−τy )(1−δ)My

1−My

1+ My−ωMd

1−My
τy

(
d0 +ε0 −τy y0

)
χH−1

=
Md (1−ω)

1−My
+ω

(
1−(1−τy )(1−δ)My

1−My

)
χH−1

1+ My−ωMd

1−My
τy +ω

(
1−(1−τy )(1−δ)My

1−My

)
τyχH−1

d0 +
My−ωMd

1−My
+ω

(
1−(1−τy )(1−δ)My

1−My

)
χH−1

1+ My−ωMd

1−My
τy +ω

(
1−(1−τy )(1−δ)My

1−My

)
τyχH−1

ε0

=χH dt +χεHε0 with χH =
Md (1−ω)

1−My
+ω

(
1−(1−τy )(1−δ)My

1−My

)
χH−1

1+ My−ωMd

1−My
τy +ω

(
1−(1−τy )(1−δ)My

1−My

)
τyχH−1

, (D.23)

and χεH =
My−ωMd

1−My
+ω

(
1−(1−τy )(1−δ)My

1−My

)
χH−1

1+My−ωMd
1−My

τy+ω
(

1−(1−τy )(1−δ)My
1−My

)
τyχH−1

. Define

g
(
χ
)≡ Md (1−ω)

1−My
+ω

(
1−(1−τy )(1−δ)My

1−My

)
χ

1+ My−ωMd

1−My
τy +ω

(
1−(1−τy )(1−δ)My

1−My

)
τyχ

= 1

τy
−

My−Md

1−My
+ 1
τy

1+ My−ωMd

1−My
τy +ω

(
1−(1−τy )(1−δ)My

1−My

)
τyχ

. (D.24)

From (D.21), we know that χ1 = g
(
χ

′
0

)
with

χ
′
0 =

My

1− (
1−τy

)
(1−δ) My

(
Md

My
−δ1−Md

1−My

)
. (D.25)

From (D.22) and (D.23) we have χk = g
(
χk−1

)
for all k ∈ {2, · · · , H } . We first find the fixed point of f

(
χ
)

:

χMSV =
Md (1−ω)

1−My
+ω

(
1−(1−τy )(1−δ)My

1−My

)
χMSV

1+ My−ωMd

1−My
τy +ω

(
1−(1−τy )(1−δ)My

1−My

)
τyχMSV

, (D.26)

which is equivalent to

ω

(
1− (

1−τy
)

(1−δ) My

1−My

)
τyχ

2
MSV +χMSV

(
1+ My −ωMd

1−My
τy −ω

(
1− (

1−τy
)

(1−δ) My

1−My

))
−Md (1−ω)

1−My
= 0.

(D.27)
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Let χMSV ,1 denote the smaller root and χMSV ,2 denote the larger root:

χMSV ,1 =
−

(
1+ My−ωMd

1−My
τy −ω

(
1−(1−τy )(1−δ)My

1−My

))
−

√(
1+ My−ωMd

1−My
τy −ω

(
1−(1−τy )(1−δ)My

1−My

))2
+4 Md (1−ω)

1−My
ω

(
1−(1−τy )(1−δ)My

1−My

)
τy

2ω
(

1−(1−τy )(1−δ)My

1−My

)
τy

χMSV ,2 =
−

(
1+ My−ωMd

1−My
τy −ω

(
1−(1−τy )(1−δ)My

1−My

))
+

√(
1+ My−ωMd

1−My
τy −ω

(
1−(1−τy )(1−δ)My

1−My

))2
+4 Md (1−ω)

1−My
ω

(
1−(1−τy )(1−δ)My

1−My

)
τy

2ω
(

1−(1−τy )(1−δ)My

1−My

)
τy

.

(D.28)

If Assumption 1 holds (ω < 1), we know that χMSV ,1χMSV ,2 < 0 so χMSV ,1 < 0 and χMSV ,2 > 0. Note

that 1+ My−ωMd

1−My
τy +ω

(
1−(1−τy )(1−δ)My

1−My

)
τyχMSV ,1 > 0,42 we have g

(
χ
) > χ if χ ∈ (

χMSV ,1,χMSV ,2
)

and

g
(
χ
)<χ if χ ∈ (χMSV ,2,+∞). From (D.24), we also know that g

(
χ
)

increases if χ ∈ [
χMSV ,1,+∞]

.

Moreover, from (D.25), we know that χ
′
0 ≥χMSV ,1. To see this, define the left-hand side of (D.27) as

h
(
χ
)=ω(

1− (
1−τy

)
(1−δ) My

1−My

)
τyχ

2+
(

1+ My −ωMd

1−My
τy −ω

(
1− (

1−τy
)

(1−δ) My

1−My

))
χ− Md (1−ω)

1−My
.

We have

h
(
χ

′
0

)
=

(
ω
τy My

1−My

(
Md

My
−δ1−Md

1−My

)
+1+ My −ωMd

1−My
τy −ω

(
1− (

1−τy
)

(1−δ) My

1−My

))
χ

′
0 −

Md (1−ω)

1−My

=
(
1+ τy My

1−My

(
1−ωδ1−Md

1−My

))
χ

′
0 −ω

My

1−My

(
Md

My
−δ1−Md

1−My

)
− Md (1−ω)

1−My

=
My

(
1+ τy My

1−My

(
1−ωδ 1−Md

1−My

))
1− (

1−τy
)

(1−δ) My

(
Md

My
−δ1−Md

1−My

)
− Md

1−My

[
1−ωδMy

Md

1−Md

1−My

]

=
(
1−My

)2 +τy My
(
1−My −ωδ (1−Md )

)
1− (

1−τy
)

(1−δ) My

Md

1−My

(
1−δMy

Md

1−Md

1−My

)
− Md

1−My

[
1−ωδMy

Md

1−Md

1−My

]

Since (1−My )2+τy My−τy My (My+ωδ(1−Md ))
1−(1−τy )(1−δ)My

< 1 and 1−δMy

Md

1−Md
1−My

< 1−ωδMy

Md

1−Md
1−My

, we know that h
(
χ

′
0

)
< 0

so χ
′
0 ≥ χMSV ,1. The fact that χ

′
0 ≥ χMSV ,1 together with the aforementioned property of g

(
χ
)

means

that
{
χk

}∞
k=0 is a bounded, monotonic sequence converging to limk→+∞χk =χMSV ,2 > 0.

42If 1+ My−ωMd

1−My
τy+ω

(
1−(1−τy )(1−δ)My

1−My

)
τyχMSV ,1 < 0, Md (1−ω)

1−My
+ω

(
1−(1−τy )(1−δ)My

1−My

)
χMSV ,1 < 0, andχMSV ,1 > 0 from (D.26),

a contradiction.
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If Assumption 2 holds (ω< 1), χMSV ,2 > 1−β
τy

. To see this, we have

h

(
1−β
τy

)
=ω

(
1− (

1−τy
)

(1−δ) My

1−My

) (
1−β)2

τy
+

(
1+ My −ωMd

1−My
τy −ω

(
1− (

1−τy
)

(1−δ) My

1−My

))
1−β
τy

− Md (1−ω)

1−My

=−βω
(

1− (
1−τy

)
(1−δ) My

1−My

)
1−β
τy

+
(
1+ My

1−My
τy

)
1−β
τy

−
(
1−βω)

Md

1−My

<−βω
(

1− (
1−τy

)
(1−δ) My

1−My

)
1−β
τy

+
1+ My

1−My
τy −

(
1−βω)[

1− (
1−τy

)
My

(
1+δ βω

1−βω
)]

1−My

 1−β
τy

=−βω
(

1− (
1−τy

)
(1−δ) My

1−My

)
1−β
τy

+βω
(

1− (
1−τy

)
My (1−δ)

1−My

)
1−β
τy

= 0.

Similar to (A.10),

E0 [dt ] = 1

βt
Πt−1

j=0

(
1−τyχH− j

)
(d0 +ε0) .

Since limk→+∞χk = χMSV ,2 > 1−β
τy

, we know that limH→∞E0 [dH ] → 0. This finishes the proof with the

alternative fiscal policy (7).

D.9 Proof of Theorem 3

As mentioned in the main text, we restrict φ ∈ [−1/σ,
τy

βDss
Y ss

). Aggregating individual demand relation

(10), together with monetary policy (30), goods and asset market clearing, and the government budget

(4) lead to the following aggregate demand relation:

yt =
(
1−βω)(

dt +Et

[ ∞∑
k=0

(
βω

)k (
yt+k − tt+k

)])
−

(
σω− (1−βω)

D ss

Y ss

)
βφEt

[ ∞∑
k=0

(βω)k yt+k

]

=
(1−βω)(1−ω)

βω

1+σφ− (1−βω)(1−ω)
ω

φD ss

Y ss

(dt − tt )+ 1

1+σφ− (1−βω)(1−ω)
ω

φD ss

Y ss

Et
[

yt+1
]

Together with the baseline fiscal policy (6) we arrive at the following equation:

yt =
(1−βω)(1−ω)

βω (1−τd )

1+σφ+ (1−βω)(1−ω)
βω

(
τy −βφD ss

Y ss

) (dt +εt )+ 1

1+σφ+ (1−βω)(1−ω)
βω

(
τy −βφD ss

Y ss

)Et
[

yt+1
]

.

Applying the period-t expectation operator Et [·] to (4), we have

(
Et [dt+1]

Et
[

yt+1
] )

=

 1−τd
β

−τy−βφDss

Y ss

β

− (1−βω)(1−ω)(1−τd )
βω 1+σφ+ (1−βω)(1−ω)

(
τy−βφDss

Y ss

)
βω

(
dt +εt

yt

)
(D.29)
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The two eigenvalues are given by the solutions of

λ2 −λ
(

1−τd

β
+1+σφ+

(
1−βω)

(1−ω)

βω

(
τy −βφD ss

Y ss

))
+ (

1+σφ) 1−τd

β
= 0. (D.30)

From φ ∈ [−1/σ,
τy

βDss
Y ss

] and τd ∈ [0,1], we know that λ1 +λ2 ≥ 0 and λ1λ2 ≥ 0, so λ1 ≥ 0 and λ2 ≥ 0.

We first prove Part 1 of Theorem 3. That is, if

φ< φ̄≡
(1−βω)(1−ω)

ω τy

σ
(
1−β)+ (1−βω)(1−ω)

ω
βD ss

Y ss

< τy

βD ss

Y ss

, (D.31)

complete self-financing is achieved as the fiscal adjustment is infinitely delayed. That is, there exists

a bounded equilibrium of the form (17) with limτd→0+ ρd ∈ (0,1) and limτd→0+ ν= 1.
Since the eigenvalue of (D.30) is continuous in τd at 0, we have

lim
τd→0+

λ1 =

(
1
β
+1+σφ+ (1−βω)(1−ω)

βω

(
τy −βφDss

Y ss

))
+

√(
1
β
+1+σφ+ (1−βω)(1−ω)

βω

(
τy −βφDss

Y ss

))2 −4
1+σφ
β

2

=

(
1
β
+1+σφ+ (1−βω)(1−ω)

βω

(
τy −βφDss

Y ss

))
+

√(
1+σφ− 1

β
− (1−βω)(1−ω)

βω

(
τy −βφDss

Y ss

))2 +4
(
1+σφ) (1−βω)(1−ω)

βω

(
τy −βφDss

Y ss

)
2

and

lim
τd→0+

λ2 =

(
1
β +1+σφ+ (1−βω)(1−ω)

βω

(
τy −βφD ss

Y ss

))
−

√(
1
β +1+σφ+ (1−βω)(1−ω)

βω

(
τy −βφD ss

Y ss

))2 −4 1+σφ
β

2

=

(
1
β +1+σφ+ (1−βω)(1−ω)

βω

(
τy −βφD ss

Y ss

))
−

√(
1+σφ− 1

β − (1−βω)(1−ω)
βω

(
τy −βφD ss

Y ss

))2 +4
(
1+σφ) (1−βω)(1−ω)

βω

(
τy −βφD ss

Y ss

)
2

.

(D.32)

When φ ∈ [−1/σ,0), from (D.32),

lim
τd→0+

λ2 ≤
(

1
β +1+σφ+ (1−βω)(1−ω)

βω

(
τy −βφD ss

Y ss

))
−

∣∣∣1+σφ− 1
β − (1−βω)(1−ω)

βω

(
τy −βφD ss

Y ss

)∣∣∣
2

≤ 1+σφ< 1

When φ ∈ [0, φ̄), from (D.31), we have(
1−βω)

(1−ω)

βω

(
τy −βφD ss

Y ss

)
>σφ

(
1

β
−1

)
.
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Hence

lim
τd→0+

λ2 =
2 1+σφ

β(
1
β +1+σφ+ (1−βω)(1−ω)

βω

(
τy −βφD ss

Y ss

))+√(
1
β +1+σφ+ (1−βω)(1−ω)

βω

(
τy −βφD ss

Y ss

))2 −4 1+σφ
β

(D.33)

<
2 1+σφ

β

1
β +1+ σφ

β +
√(

1+ 1+σφ
β

)2 −4 1+σφ
β

=
2 1+σφ

β

1+ 1+σφ
β +

∣∣∣ 1+σφ
β −1

∣∣∣ = 1.

Thus, as long as (D.31) holds, a bounded equilibrium in the form of (17) withρd =λ2 andχ= 1−τd−βρd
τy

>
0 will be a solution of (D.29), with limτd→0+ ρd < 1. Given (17), one can then back out {πt ,dt −Et−1 [dt ]}

from (14) – (16). The fact that limτd→0+ ν→ 1 follows directly from the definition of ν in (B.18) and the

fact that limτd→0+

(
τd

ε0+∑+∞
k=0β

k E0[dk ]
ε0

)
= 0 given limτd→0+ ρd ∈ (0,1).

For Part 2 of Theorem 3, note that, when φ> φ̄, we from (D.31) have(
1−βω)

(1−ω)

βω

(
τy −βφD ss

Y ss

)
<σφ

(
1

β
−1

)
.

Hence, from (D.33),

lim
τd→0+

λ2 >
2 1+σφ

β

1
β +1+ σφ

β +
√(

1+ 1+σφ
β

)2 −4 1+σφ
β

= 1.

As a result, there exists no bounded equilibrium if the fiscal adjustment is infinitely delayed (i.e., if

τd → 0 from above). For τd > 0, we have43

λ2 = f (a,b) ≡
a +b +1+σφ−

√(
a +b − (

1+σφ))2 +4
(
1+σφ)

b

2

where f (a,b) , a = 1
β (1−τd ) > 0, and b = (1−βω)(1−ω)

βω

(
τy −βφD ss

Y ss

)
> 0. Since ∂ f

∂a = 1
2−

a+b−(1+σφ)
2
√

(a+b−(1+σφ))2+4(1+σφ)b
>

0, we know that ρd decreases with τd and limτd→1− λ2 =0. As a result, for φ > φ̄, there exists an

τd

(
φ

) ∈ (0,1) such that λ2 < 1 if and only if τd > τd

(
φ

)
. As a result, for φ > φ̄, any bounded equi-

librium exists if and only if τd > τd

(
φ

)
.

From (14) and (16) ,

d0 =−D ss

Y ss
π0 =−κD ss

Y ss

+∞∑
k=0

βkE0
[

yk
]=−κD ss

Y ss

χ

1−βρd
(d0 +ε0) =−

κD ss

Y ss
χ

1−βρd

1+κD ss

Y ss
χ

1−βρd

ε0.

43The formula for the function f is slightly adjusted compared to (D.11) in the baseline analysis, to accommodate φ ̸= 0.
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From the definition (B.18), we know

ν=

(
τy+κDss

Y ss

)
χ

1−βρd

1+κDss
Y ss

χ
1−βρd

1+ βDss
Y ss φ

χ
1−βρd

1+κDss
Y ss

χ
1−βρd

=
(
κD ss

Y ss +τy

)
χ

1−βρd

1+ (
κ+βφ) D ss

Y ss
χ

1−βρd

=
(
κD ss

Y ss +τy

)
χ

τd + (
κD ss

Y ss +τy
)
χ

,

where I use ρd = 1−τd
β − τy−βφDss

Y ss

β χ from (D.29). For any φ ∈
(
φ̄,

τy

βDss
Y ss

)
, χ = 1−τd−βρd

τy−βφDss
Y ss

≤ 1−τ̄d (φ)
τy−βφDss

Y ss
and

ν≤
(
κDss

Y ss +τy

)
1−τ̄d (φ)

τy−βφDss
Y ss

τ̄d (φ)+
(
κDss

Y ss +τy

)
1−τ̄d (φ)

τy−βφDss
Y ss

≡ ν̄(
φ

)< 1. This proves Part 2 of Theorem 3.

D.10 Proof of Proposition C.1

We note that the proof heavily leverages results from Wolf (2021a). Following that paper, all arguments

are established using sequence-space notation, with boldface denoting time paths.

The sequence of wealth holdings associated with an interest rate sequence rrr (both in deviation

from steady state) is given as

ddd(rrr ) =Dr ×rrr

where Dr is the sequence-space Jacobian of wealth holdings with respect to interest rates. The desired

long-run elasticity η is the long-run response of asset holdings to a permanent change in interest rates;

that is, it is given as the limit (if it exists) of the sequence ddd(111).

It follows from the aggregate household budget constraint that the savings matrix Dr and the anal-

ogous consumption matrix Mr are related as44

Mr + 1

1+ r̄
Dr =

(
000′

Dr

)
(D.34)

where 1+ r̄ =β−1. Since by definition

η= lim
H→∞

Dr (H ,•)×111

it follows from (D.34) that we have

η= 1+ r̄

r̄
lim

H→∞
Mr (H ,•)×111 (D.35)

It thus remains to characterize Mr . For this we momentarily assume that there are no spenders (µ=
44Note that this construction removes income effects related to steady-state wealth holdings.
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0); the extension to the full spender-OLG model is straightforward and will come at the end. It follows

from the results in Wolf (2021a) that Mr has the following limiting properties:

lim
H→∞

Mr (H , H) = −σβω 1−ω
1−βω2

lim
H→∞

Mr (H , H −1) = σ
ω(1−βω)

1−βω2

as well as

lim
H→∞

Mr (H , H − s)

Mr (H , H − s +1)
= ωβ, s ≥ 2

lim
H→∞

Mr (H , H + s)

Mr (H , H + s −1)
= ω, s ≥ 1

Plugging those relations into (D.35) and simplifying, we find

η= 1

1−βσ
[

1

1−θ − 1

1−βθ
]

(D.36)

Finally, if there is a margin of spenders, then the elasticity is simply scaled down to correspond to the

margin of OLG households (1−µ), thus giving (C.2).

87


