Can Deficits Finance Themselves?

Marios Angeletos Chen Lian Christian Wolf
Northwestern Berkeley MIT

54th Konstanz Seminar, May 2023
How are deficits financed? (when $r > g$)

\[
\text{gov't debt} = \text{PDV of primary surpluses}
\]

- **Standard margin**: fiscal adjustment—raise taxes (or cut spending) in the future

- "Self-financing"—close shortfall via eq'm changes in prices & quantities

| Q: how important is such self-financing? can there ever be full self-financing? | Angeletos, Lian, and Wolf |
How are deficits financed? (when $r > g$)

gov’t debt $= \text{PDV of primary surpluses}$

- **Standard margin**: fiscal adjustment—raise taxes (or cut spending) in the future

- We’ll investigate another margin that arises with liquidity frictions [HANK, OLG, …]
 - Simple mechanism: deficit today \rightarrow demand-driven boom \rightarrow tax base ↑, inflation ↑
 Will operate even if fiscal policy is “passive/Ricardian”, and even if the Taylor principle is satisfied.
 - “Self-financing”—close shortfall via eq’m changes in prices & quantities
How are deficits financed? (when \(r > g \))

gov’t debt = PDV of primary surpluses

- **Standard margin**: fiscal adjustment—raise taxes (or cut spending) in the future

- We’ll investigate another margin that arises with liquidity frictions \([\text{HANK, OLG, ...}]\)
 - Simple mechanism: deficit today \(\rightarrow\) demand-driven boom \(\rightarrow\) tax base ↑, inflation ↑
 Will operate even if fiscal policy is “passive/Ricardian”, and even if the Taylor principle is satisfied.
 - “Self-financing”—close shortfall via eq’m changes in prices & quantities

Q: how important is such self-financing? can there ever be full self-financing?
How big can “self-financing” be?

Environment: finite lives/liquidity constraints + nominal rigidities
Policy: full fiscal adjustment promised at future date H + monetary policy is “neutral” (fix $\mathbb{E}(r)$)
How big can “self-financing” be?

Environment: finite lives/liquidity constraints + nominal rigidities
Policy: full **fiscal adjustment** promised at future date H + monetary policy is “neutral” (fix $\mathbb{E}(r)$)

- **Main result**: if fiscal adjustment is delayed enough, then get full **self-financing**
 1. **Monotonicity**: as H increases, the actual required future tax hike gets smaller and smaller
 2. **Limit**: the future tax hike vanishes, i.e., we converge to full self-financing

Split depends on nominal rigidities. All via output/tax base ↑ if rigid, all via prices ↑ if flexible.
How big can “self-financing” be?

Environment: finite lives/liquidity constraints + nominal rigidities
Policy: full fiscal adjustment promised at future date H + monetary policy is “neutral” ($\mathbb{E}(r)$)

- **Main result**: if fiscal adjustment is delayed enough, then get full self-financing
 1. **Monotonicity**: as H increases, the actual required future tax hike gets smaller and smaller
 2. **Limit**: the future tax hike vanishes, i.e., we converge to full self-financing

Split depends on nominal rigidities. All via output/tax base \uparrow if rigid, all via prices \uparrow if flexible.

- **Intuition**: “ignore” far-ahead tax (i.e., discounting) + front-loaded Keynesian cross

Why is the limit one of exact self-financing? Keynesian cross arithmetic.
How big can “self-financing” be?

Environment: finite lives/liquidity constraints + nominal rigidities
Policy: full fiscal adjustment promised at future date $H +$ monetary policy is “neutral” (fix $\mathbb{E}(r)$)

- **Main result**: if fiscal adjustment is delayed enough, then get full self-financing

 1. Monotonicity: as H increases, the actual required future tax hike gets smaller and smaller
 2. Limit: the future tax hike vanishes, i.e., we converge to full self-financing

Split depends on nominal rigidities. All via output/tax base ↑ if rigid, all via prices ↑ if flexible.

- **Intuition**: “ignore” far-ahead tax (i.e., discounting) + front-loaded Keynesian cross

 Why is the limit one of exact self-financing? Keynesian cross arithmetic.

- **Practical relevance**: holds in many environments & quantitatively powerful
 general aggregate demand (incl. HANK), active monetary policy, investment, distortionary taxation, …
Environment
• Aggregate demand
 ○ Unit continuum of OLG households with survival probability $\omega \in (0, 1]$. Nests standard PIH model with $\omega = 1$, and mimics HANK with $\omega < 1$.

\[
c_t = (1 - \beta \omega) \left| \text{MPC} \right| (1 - \beta \omega) \left| \text{wealth} \right| + E^{\infty} \sum_{k=0}^{\infty} \left(\beta \omega \right)^k (y_t + k - t) - \gamma E^{\infty} \sum_{k=0}^{\infty} \left(\beta \omega \right)^k r_t.
\]

Key features: (i) elevated MPC + (ii) addt'l discounting of future income & taxes

• Aggregate supply
 ○ Nominal rigidities + union bargaining gives a standard NKPC relation:

\[
\pi_t = \kappa y_t + \beta E_t [\pi_t + 1].
\]

Angeletos, Lian, and Wolf
Non-policy block

• Aggregate demand
 ○ Unit continuum of OLG households with survival probability \(\omega \in (0, 1] \). Nests standard PIH model with \(\omega = 1 \), and mimics HANK with \(\omega < 1 \).
 ○ Optimal consumption-savings behavior yields aggregate demand relation: Details

\[
c_t = (1 - \beta \omega) \times \left(d_t + \mathbb{E}_t \left[\sum_{k=0}^{\infty} (\beta \omega)^k (y_{t+k} - t_{t+k}) \right] - \gamma \mathbb{E}_t \left[\sum_{k=0}^{\infty} (\beta \omega)^k r_{t+k} \right] \right)
\]

Key features: (i) elevated MPC + (ii) addt’l discounting of future income & taxes
• Aggregate demand
 ○ Unit continuum of OLG households with survival probability $\omega \in (0, 1]$. Nests standard PIH model with $\omega = 1$, and mimics HANK with $\omega < 1$.
 ○ Optimal consumption-savings behavior yields aggregate demand relation:

\[
c_t = (1 - \beta \omega) \times \left(d_t + \mathbb{E}_t \left[\sum_{k=0}^{\infty} (\beta \omega)^k (y_{t+k} - t_{t+k}) \right] - \gamma \mathbb{E}_t \left[\sum_{k=0}^{\infty} (\beta \omega)^k r_{t+k} \right] \right)
\]

(1)

Key features: (i) elevated MPC + (ii) add’l discounting of future income & taxes

• Aggregate supply
 ○ Nominal rigidities + union bargaining gives a standard NKPC relation:

\[
\pi_t = \kappa y_t + \beta \mathbb{E}_t [\pi_{t+1}]
\]

(2)
• Monetary policy

 ○ Monetary authority responds to output fluctuations:

 \[
 i_t - \mathbb{E}_t [\pi_{t+1}] = \phi \times y_t \equiv r_t
 \]

 ○ First consider “neutral” monetary policy with \(\phi = 0 \)—no monetary help. Later generalize.
Policy

- **Monetary policy**
 - Monetary authority responds to output fluctuations:
 \[
 i_t - \mathbb{E}_t [\pi_{t+1}] = \phi \times y_t \equiv r_t
 \]
 (3)
 - First consider “neutral” monetary policy with \(\phi = 0 \)—no monetary help. Later generalize.

- **Fiscal policy**
 - Issue nominal debt. Log-linearized government budget constraint (in real terms):
 \[
 d_{t+1} = (1 + \bar{r}) \times (d_t - t_t) + \frac{\bar{d}}{\bar{y}} r_t - \frac{\bar{d}}{\bar{y}} (\pi_{t+1} - \mathbb{E}_t [\pi_{t+1}])
 \]
 (4)
Policy

- **Monetary policy**
 - Monetary authority responds to output fluctuations:
 \[i_t - \mathbb{E}_t[\pi_{t+1}] = \phi \times y_t \]
 \[\equiv r_t \]
 \[(3) \]
 - First consider “neutral” monetary policy with \(\phi = 0 \)—no monetary help. Later generalize.

- **Fiscal policy**
 - Issue nominal debt. Log-linearized government budget constraint (in real terms):
 \[d_{t+1} = (1 + \bar{r}) \times (d_t - t_t) + \frac{\bar{d}}{\bar{y}} r_t - \frac{\bar{d}}{\bar{y}} (\pi_{t+1} - \mathbb{E}_t[\pi_{t+1}]) \]
 \[(4) \]
 - Taxes adjust **gradually** to balance gov’t budget, where \(\tau_d \) parameterizes **delay**:
 \[t_t = \tau_d \times (d_t + \varepsilon_t) + \tau_y y_t - \varepsilon_t \]
 \[\text{fiscal adjustment} \quad \text{tax base financing} \quad \text{“stimulus checks”} \]
 \[(5) \]

Policy

- **Monetary policy**
 - Monetary authority responds to output fluctuations:
 \[
 i_t - E_t [\pi_{t+1}] = \phi \times y_t \equiv r_t
 \]
 \[\text{(3)}\]
 - First consider “neutral” monetary policy with \(\phi = 0\) — no monetary help. Later generalize.

- **Fiscal policy**
 - Issue nominal debt. Log-linearized government budget constraint (in real terms):
 \[
 d_{t+1} = (1 + \bar{r}) \times (d_t - t_t) + \frac{\bar{d}}{y} r_t - \frac{\bar{d}}{y} (\pi_{t+1} - E_t [\pi_{t+1}]) \]
 \[\text{(4)}\]
 - Taxes adjust **gradually** to balance gov’t budget, where \(\tau_d\) parameterizes delay:
 \[
 t_t = \tau_d \times (d_t + \epsilon_t) + \tau_y y_t - \epsilon_t
 \]
 \[\text{(5)}\]

 For transparent intuition look at \(H\)-rule: \(\tau_{d.t} = 0\) initially, then \(= 1\) after \(H\) so \(d_{H+1} = 0\).
Proposition

Suppose that $\omega < 1$ and $\tau_y > 0$. The economy (1) - (5) has a unique bounded eq’m.
Equilibrium & sources of financing

- Eq’m existence & uniqueness ➤ Full eq’m characterization

Proposition

Suppose that \(\omega < 1 \) and \(\tau_y > 0 \). The economy (1) - (5) has a unique bounded eq’m.

- Our Q: how are fiscal deficits in this eq’m financed?
 - From the intertemporal gov’t budget constraint:

 \[
 \varepsilon_0 = \tau_d \times \left(\varepsilon_0 + \sum_{k=0}^{\infty} \beta^k \mathbb{E}_0 (d_k) \right) + \frac{\bar{d}}{\bar{y}} (\pi_0 - \mathbb{E}_{-1} (\pi_0)) + \sum_{k=0}^{\infty} \beta^k \tau_y \mathbb{E}_0 (y_k)
 \]

 - fiscal adjustment: \((1 - \nu) \times \varepsilon_0 \)
 - debt erosion
 - tax base expansion
 - self-financing: \(\nu \times \varepsilon_0 \)

 - Next: characterize \(\nu \) as a function of fiscal adjustment delay (\(\tau_d \) or \(H \))
The Self-Financing Result
The self-financing result

Theorem

Suppose that $\omega < 1$ and $\tau_y > 0$. The **self-financing share** ν has the following properties:

1. **Monotonicity**: It is increasing in the delay of fiscal adjustment (i.e., increasing in H and decreasing in τ_d).

2. **Limit**: As fiscal financing is delayed more and more (i.e., as $H \to \infty$ or $\tau_d \to 0$), ν converges to 1. In words, delaying the tax hike makes it vanish.

In this limiting eq’m:

- **a)** Gov’t debt returns to steady state even without any fiscal adjustment:
 \[E_t \left[d_t + 1 \right] = \rho_d (d_t + \varepsilon_t) \]
 where $\rho_d \in (0, 1)$.

- **b)** The share of self-financing coming from the tax base expansion is increasing in the strength of nominal rigidities. With rigid prices the cumulative output multiplier is $1/\tau_y$.

Angeletos, Lian, and Wolf
The self-financing result

Theorem

Suppose that $\omega < 1$ and $\tau_y > 0$. The self-financing share ν has the following properties:

1. **[Monotonicity]** It is increasing in the delay of fiscal adjustment (i.e., it is increasing in H and decreasing in τ_d).

Angeletos, Lian, and Wolf
The self-financing result

Theorem

Suppose that $\omega < 1$ and $\tau_y > 0$. The self-financing share ν has the following properties:

1. **[Monotonicity]** It is increasing in the delay of fiscal adjustment (i.e., it is increasing in H and decreasing in τ_d).

2. **[Limit]** As fiscal financing is delayed more and more (i.e., as $H \to \infty$ or $\tau_d \to 0$), ν converges to 1. In words, delaying the tax hike makes it vanish.
The self-financing result

Theorem

Suppose that $\omega < 1$ and $\tau_y > 0$. The **self-financing share** ν has the following properties:

1. **[Monotonicity]** It is increasing in the delay of fiscal adjustment (i.e., it is increasing in H and decreasing in τ_d).

2. **[Limit]** As fiscal financing is delayed more and more (i.e., as $H \to \infty$ or $\tau_d \to 0$), ν converges to 1. In words, delaying the tax hike makes it vanish. In this limiting eq’m:

 a) Gov’t debt returns to steady state even without any fiscal adjustment:

 \[E_t [d_{t+1}] = \rho_d (d_t + \varepsilon_t), \quad \rho_d \in (0, 1) \]

 b) The share of self-financing coming from the tax base expansion is increasing in the strength of nominal rigidities. With rigid prices the cumulative output multiplier is $\frac{1}{\tau_y}$.

Angeletos, Lian, and Wolf
A graphical illustration

Output y_t

Gov’t Debt d_t

Self-Financing Share ν

Angeletos, Lian, and Wolf
A graphical illustration

Output y_t

Gov’t Debt d_t

Self-Financing Share ν

Immediate Financing

$H = 5$

$H = 10$

Date-0 Inflation

Tax Base

Angeletos, Lian, and Wolf
A graphical illustration

Output y_t

Gov’t Debt d_t

Self-Financing Share ν

Angeletos, Lian, and Wolf
A graphical illustration

if fiscal adjustment is delayed, then financing will come via eq’m prices & quantities
The Self-Financing Result

Intuition
Economic intuition

- Background: self-financing in a “static” Keynesian cross
 - Transfer at $t = 0$, tax (if needed) at $t = 1$, assume static KC at $t = 0$.

\[
y_0 = \frac{1}{1 - \text{mpc}} (1 - \tau) y_0 \Rightarrow \nu = \tau \frac{1}{1 - \text{mpc}} (1 - \tau) y_0
\]

- We see: ν is increasing in the mpc, with $\nu \to 1$ for $\text{mpc} \to 1$

- Our th'm: features of static model have analogues in dynamic economy (for now: $\kappa = 0$)

PE: Largely discount date-angle H, tax hike + spend date-angle 0 gain quickly, so short-run PE effect reaches 1 far before H — akin to numerator above. Then get later demand bust around H.
Economic intuition

- Background: self-financing in a “static” Keynesian cross
 - Transfer at $t = 0$, tax (if needed) at $t = 1$, assume static KC at $t = 0$. Then:
 \[y_0 = \frac{mpc}{1 - mpc(1 - \tau_y)} \times \epsilon_0, \quad \Rightarrow \quad \nu = \frac{\tau_y \times mpc}{1 - mpc(1 - \tau_y)} \]
 - We see: ν is increasing in the mpc, with $\nu \to 1$ for $mpc \to 1$
Economic intuition

- **Background:** self-financing in a “static” Keynesian cross

 ○ Transfer at $t = 0$, tax (if needed) at $t = 1$, assume static KC at $t = 0$. Then:

 $$y_0 = \frac{\text{mpc}}{1 - \text{mpc}(1 - \tau_y)} \times \varepsilon_0, \quad \implies \nu = \frac{\tau_y \times \text{mpc}}{1 - \text{mpc}(1 - \tau_y)}$$

 ○ We see: ν is increasing in the mpc, with $\nu \to 1$ for $\text{mpc} \to 1$

- **Our th’m:** features of static model have analogues in **dynamic economy** [for now: $\kappa = 0$]
Economic intuition

- **Background:** self-financing in a “static” Keynesian cross

 - Transfer at $t = 0$, tax (if needed) at $t = 1$, assume static KC at $t = 0$. Then:
 \[
 y_0 = \frac{mpc}{1 - mpc(1 - \tau_y)} \times \epsilon_0, \quad \implies \nu = \frac{\tau_y \times mpc}{1 - mpc(1 - \tau_y)}
 \]

 - We see: ν is increasing in the mpc, with $\nu \to 1$ for $mpc \to 1$

- **Our th’m:** features of static model have analogues in **dynamic economy** [for now: $\kappa = 0$]

 PE Largely discount date-H tax hike + spend date-0 gain quickly, so short-run **PE effect** reaches 1 far before H—akin to numerator above. Then get later demand bust around H.

Angeletos, Lian, and Wolf
Economic intuition
Economic intuition

• Background: self-financing in a “static” Keynesian cross
 ○ Transfer at \(t = 0 \), tax (if needed) at \(t = 1 \), assume static KC at \(t = 0 \). Then:

 \[
y_0 = \frac{mpc}{1 - mpc(1 - \tau_y)} \times \varepsilon_0, \quad \rightarrow \quad \nu = \frac{\tau_y \times mpc}{1 - mpc(1 - \tau_y)}
 \]

 ○ We see: \(\nu \) is increasing in the mpc, with \(\nu \to 1 \) for \(mpc \to 1 \)

• Our th’m: features of static model have analogues in dynamic economy [for now: \(\kappa = 0 \)]

 PE Largely discount date-\(H \) tax hike + spend date-0 gain quickly, so short-run PE effect reaches 1 far before \(H \)—akin to numerator above. Then get later demand bust around \(H \).

 GE Spend GE income gains quickly, so multiplier converges to size \(1/\tau_y \) quickly—akin to denominator above. Thus debt stabilizes on its own before \(H \), and tax hike is not needed.
Economic intuition

"short run" "long run"

PE

Angeletos, Lian, and Wolf
Economic intuition

”short run”

”long run”

$1/\tau_y$

-1

1

0

0.5

0.4

0.3

0.2

0.1

0

-0.1

-0.2

0

20

40

60

80

100

$\%$

$P_E \quad G_E$

Angeletos, Lian, and Wolf
Economic intuition

- Background: self-financing in a “static” Keynesian cross
 - Transfer at $t = 0$, tax (if needed) at $t = 1$, assume static KC at $t = 0$. Then:
 \[y_0 = \frac{\text{mpc}}{1 - \text{mpc}(1 - \tau y)} \times \epsilon_0, \quad \Rightarrow \quad \nu = \frac{\tau y \times \text{mpc}}{1 - \text{mpc}(1 - \tau y)} \]
 - We see: ν is increasing in the mpc, with $\nu \to 1$ for \text{mpc} $\to 1$

- Our th’m: features of static model have analogues in dynamic economy [for now: $\kappa = 0$]
 - PE Largely discount date-H tax hike + spend date-0 gain quickly, so short-run PE effect reaches 1 far before H—akin to numerator above. Then get later demand bust around H.
 - GE Spend GE income gains quickly, so multiplier converges to size $1/\tau y$ quickly—akin to denominator above. Thus debt stabilizes on its own before H, and tax hike is not needed.

With imperfectly rigid prices: boom partially leaks into prices instead of quantities.
Practical Relevance
1. Policy
 - Fiscal policy: distortionary taxes, gov't purchases
 - Monetary response
 - Intuition: $\phi < 0$ accelerates the Keynesian cross, $\phi > 0$ delays it
 - Length of eq’m boom is increasing in ϕ. Full self-financing as long as ϕ is not too big.

2. Economic environment
 - Rest of the economy: different NKPC, wage rigidity, investment
 - Demand relation
 - Need discounting—break Ricardian equivalence + front-load spending
 - Next: what happens in quantitative model consistent with evidence on consumer demand?
Extensions & generality

1. **Policy**
 - Fiscal policy: distortionary taxes, gov't purchases
 - **Monetary response**
 - Intuition: $\phi < 0$ accelerates the Keynesian cross, $\phi > 0$ delays it
 - Length of eq’m boom is increasing in ϕ. Full self-financing as long as ϕ is not too big.

2. **Economic environment**
 - Rest of the economy: different NKPC, wage rigidity, investment
 - **Demand relation**
 - Need discounting—break Ricardian equivalence + front-load spending
 - Next: what happens in quantitative model consistent with evidence on consumer demand?
Key targets: (i) consumer spending behavior [IMPCs] & (ii) fiscal adjustment speed

For now continue to set $\phi = 0$. In paper also investigate classical “active” monetary policy.
Key targets: (i) consumer spending behavior [iMPCs] & (ii) fiscal adjustment speed

For now continue to set $\phi = 0$. In paper also investigate classical “active” monetary policy.

- **Model**: slightly generalized aggregate demand block, rest as before

 Why? Allows us to match evidence on intertemporal consumer spending. Reduced-form fit to HANK.
Key targets: (i) consumer spending behavior [iMPCs] & (ii) fiscal adjustment speed

For now continue to set $\phi = 0$. In paper also investigate classical “active” monetary policy.

- **Model:** slightly generalized aggregate demand block, rest as before
 Why? Allows us to match evidence on intertemporal consumer spending. Reduced-form fit to HANK.

- **Calibration strategy**

 (i) Match evidence on spending responses to lump-sum income receipt
 Later consider alternatives—other calibration targets, behavioral models, and a HANK model.

 (ii) Consider range of τ_d consistent with literature on fiscal adjustment rule estimation
 Galí-López-Salido-Vallés, Bianchi-Melosi, Auclert-Rognlie, …
Model & calibration strategy

Key targets: (i) consumer spending behavior [iMPCs] & (ii) fiscal adjustment speed

For now continue to set $\phi = 0$. In paper also investigate classical “active” monetary policy.

- **Model**: slightly generalized aggregate demand block, rest as before

 Why? Allows us to match evidence on intertemporal consumer spending. Reduced-form fit to HANK.

- **Calibration strategy**

 (i) Match evidence on spending responses to lump-sum income receipt

 Later consider alternatives—other calibration targets, behavioral models, and a HANK model.

 (ii) Consider range of τ_d consistent with literature on fiscal adjustment rule estimation

 Galí-López-Salido-Vallés, Bianchi-Melosi, Auclert-Rognlie, …

 Nominal rigidities: today standard flat NKPC, in paper explore steeper slope.
Self-financing in the quantitative model

Angeletos, Lian, and Wolf
Takeaways
Takeaways

- **Main result:** if fiscal adjustment is delayed, then financing will instead come from debt erosion & tax base boom—i.e., **self-financing**
Takeaways

• **Main result**: if fiscal adjustment is delayed, then financing will instead come from debt erosion & tax base boom—i.e., self-financing

• **Implications**

a) **Theory**: grounded in a classical failure of Ricardian equivalence, robust to information perturbations, consistent with Taylor principle, + emphasize \(y \) vs. \(\pi \) channel

b) **Practice**: self-sustaining stimulus may be less implausible than commonly believed
 In particular if supply constraints are slack—get self-financing via output boom.
Takeaways

• **Main result**: if fiscal adjustment is delayed, then financing will instead come from debt erosion & tax base boom—i.e., **self-financing**

• **Implications**
 a) **Theory**: grounded in a classical failure of Ricardian equivalence, robust to information perturbations, consistent with Taylor principle, + emphasize y vs. π channel
 b) **Practice**: self-sustaining stimulus may be less implausible than commonly believed
 In particular if supply constraints are slack—get self-financing via output boom.

• **Ongoing work**: (optimal) policy implications for fiscal-monetary interaction
Appendix
Aggregate demand

- **Consumption-savings problem**
 - OLG hh’s with survival probability $\omega \in (0, 1]$ [can interpret as ≈ 1 - prob. of liq. constraint]
 \[
 E_t \left[\sum_{k=0}^{\infty} (\beta \omega)^k (u(C_{i,t+k}) - v(L_{i,t+k})) \right]
 \]
 - Invest in actuarially fair annuities. Budget constraint:
 \[
 A_{i,t+1} = \frac{I_t}{\omega} (A_{i,t} + P_t \cdot (W_{t}L_{i,t} + Q_{i,t} - C_{i,t} - T_{i,t} + \text{transfer to newborns}))
 \]

- **Aggregate demand relation**
 \[
 c_t = (1 - \beta \omega) \times \left(d_{t, \text{wealth}} + E_t \left[\sum_{k=0}^{\infty} (\beta \omega)^k (y_{t+k} - t_{t+k}) \right] - \gamma E_t \left[\sum_{k=0}^{\infty} (\beta \omega)^k r_{t+k} \right] \right)
 \]

 Key features: (i) elevated MPC + (ii) addt’l discounting of future income & taxes

Angeletos, Lian, and Wolf
Aggregate supply

- **Unions** equalize post-tax wage and average consumption-labor MRS. This gives

\[
(1 - \tau_y)W_t = \frac{\chi \int_0^1 L_{i,t}^{1/\varphi} di}{\int_0^1 C_{i,t}^{-1/\sigma} di}
\]

Log-linearizing:

\[
\frac{1}{\varphi} \ell_t = w_t - \frac{1}{\sigma} c_t
\]

- Combining with optimal firm pricing decisions we get the **NKPC**:

\[
\pi_t = \kappa y_t + \beta \mathbb{E}_t [\pi_{t+1}]
\]

- Note: no time-varying wedge since distortionary taxes τ_y are fixed
Equilibrium characterization

• First step to eq’m characterization is a more concise representation of agg. demand

• Combining (1), (3), (4), (5), and output market-clearing, we get

\[y_t = \mathcal{F}_1 \cdot (d_t + \epsilon_t) + \mathcal{F}_2 \cdot \mathbb{E}_t \left[\sum_{k=0}^{\infty} (\beta \omega)^k y_{t+k} \right] \]

(7)

○ Here: \(\mathcal{F}_1 \equiv \frac{(1-\beta \omega)(1-\omega)(1-\tau_d)}{1-\omega(1-\tau_d)} \) and \(\mathcal{F}_2 = (1 - \beta \omega) \left(1 - \frac{(1-\omega)\tau_y}{1-\omega(1-\tau_d)} \right) \)

○ Note: \(\mathcal{F}_1 = 0 \) if \(\omega = 1 \)—reflects lack of direct effect of deficit on consumer spending/aggregate demand under Ricardian equivalence

• Equilibrium: (2), (7) and law of motion for government debt
We will look for **bounded equilibria** in the sense of Blanchard-Kahn

- Note: in our case—with \(\omega < 1 \) and \(\tau_y > 0 \)—this is enough to rule out sunspot solutions. Recover same eq’m through limit \(\phi \to 0^+ \).

The unique bounded eq’m takes a particularly simple form:

\[
 y_t = \chi(d_t + \varepsilon_t), \quad \mathbb{E}_t[d_{t+1}] = \rho_d(d_t + \varepsilon_t)
\]

where \(\chi > 0 \) (deficits trigger boom) and \(0 < \rho_d < 1 \) (debt goes back to steady state).
Distortionary fiscal financing

• Environment
 ○ Fiscal adjustment now instead through distortionary tax adjustments. Specifically:
 \[\tau_{y,t} = \tau_y + \tau_{d,t}(D_t - D^{ss}) \]
 ○ Only effect is to change (2) to
 \[\pi_t = \kappa y_t + \beta E_t[\pi_{t+1}] + \zeta_t d_t \]

• Self-financing result
 ○ Easy to see: exactly the same limiting self-financing eq’m as before
 ○ Why? tax adjustment not necessary, so distortionary vs non-distortionary is irrelevant
Government purchases

Angeletos, Lian, and Wolf
Monetary policy reaction

- **Intuition**: $\phi < 0$ accelerates the Keynesian cross, $\phi > 0$ delays it

Proposition

There exists a $\Phi > 0$ such that:

1. An equilibrium with full self-financing exists if and only if $\phi < \Phi$.
2. The persistence of $\rho_d(\phi)$ of gov't debt (and output) in the equilibrium with full self-financing is increasing in ϕ, with $\rho_d(0) \in (0, 1)$ and $\rho_d(\Phi) = 1$.

Note: same logic for standard Taylor-type rules like $i_t = \phi \times \pi_t$.

- What happens if $\phi > \Phi$? Depends on **fiscal adjustment**:
 - If too delayed then no bounded eq’m exists. For such an aggressive monetary policy fiscal adjustment needs to be fast enough.
 - If adjustment is fast enough then there is partial but not complete self-financing.
Leeper regions
Leeper regions

\[\tau_d \]

\[\phi \]

Legend:
- None
- Unique
- Multiple
A generalized aggregate demand relation

- **Important**: our results are *not* tied to the particular OLG microfoundations
- Instead: it’s all about two empirically plausible features of **consumer demand**
 1. *Discounting*: households at date $t = 0$ respond little to expectations of far-ahead tax hikes
 2. *Front-loaded spending*: transfer receipt (and higher-order GE income) is spent quickly

 In OLG both of these are ensured by $\omega < 1$

- Will formalize this using the following **generalized AD relation**:

 $$c_t = M_d d_t + M_y \left(y_t - t_t + \delta \mathbb{E}_t \left[\sum_{k=0}^{\infty} (\beta \omega)^k (y_{t+k} - t_{t+k}) \right] \right)$$

Rich enough to nest PIH, OLG, spender-saver, spender-OLG, behavioral discounting, Also can provide very close reduced-form fit to consumer behavior in quantitative HANK models.
A generalized aggregate demand relation

- **Headline result**: sufficient conditions for self-financing

 A1 Discounting

 \[\omega < 1 \]

 Transfer today and taxes in the future redistribute from future generations to the present.

 A2 Front-loading

 \[
 M_d + \frac{1 - \beta}{\tau_y} (1 - \tau_y) M_y \left(1 + \delta \frac{\beta \omega}{1 - \beta \omega} \right) > \frac{1 - \beta}{\tau_y}
 \]

 Self-financing boom is front-loaded enough to deliver \(\rho_d < 1 \).

- **Note**: the self-financing result *fails* if there are **PIH households**
 “Deep-pocket” rational investor intuition—infinitely elastic PIH hh’s link infinite future & present.
The importance of discounting

spender-saver model

Output y_t

Gov’t Debt d_t

Self-Financing Share ν

- Immediate Financing
- $H = 5$
- $H = 10$
- $H = 20$
- $H = 40$

Angeletos, Lian, and Wolf
The importance of discounting

hybrid spender-OLG model

Output y_t

Gov’t Debt d_t

- Immediate Financing
- $H = 5$
- $H = 10$
- $H = 20$
- $H = 40$

Self-Financing Share ν

- Date-0 Inflation
- Tax Base

Angeletos, Lian, and Wolf
Adding investment

• Environment

 ○ **Households**: receive labor income plus dividends e_t. Pay taxes τy on both.
 ○ **Production**: standard DSGE production block. Key twist: no tax payments anywhere.

• Self-financing result

 ○ For rigid prices exactly the same self-financing eq’m as before. Why? Keynesian cross &
 gov’t budget both have c_t rather than y_t in them, so same pair of equations as before.
 ○ Partially sticky prices: more complicated mapping from $\{c_t\}_{t=0}^{\infty}$ back to π_0, so fixed point
 is more complicated, but can still show that self-financing eq’m exists.
 Perfectly analogous to change in NKPC. Just change mapping into π_0.

Angeletos, Lian, and Wolf
Alternative calibration strategies

Baseline: match impact and short-run MPCs, then extrapolate

Note: also consistent with evidence on long-run elasticity of asset supply.
Extension: two-type OLG + spender model to match cumulative MPC time profile

This gives $\omega_2 = 0.97$, and thus counterfactually elastic asset supply ($\approx 7 \times$ emp. upper bound).
More flexible prices

Steeper NKPC: arguably more informative about post-covid episode

Takeaways: (i) change ν_y/ν_p split & (ii) faster convergence to self-financing limit
Monetary response: consider standard Taylor rule $i_t = \phi \times \pi_t$

Takeaways: (i) slower convergence & (ii) no self-financing eq’m exists for sufficiently large ϕ
Other models

Environment: baseline + behavioral friction [strong cognitive discounting]

![Graphs showing output, inflation, and self-financing share](image-url)

Angeletos, Lian, and Wolf
Other models

Environment: HANK model [similar to Wolf (2022)]

![Graph showing output, inflation, and self-financing share](image)

Angeletos, Lian, and Wolf