Discussion of "Global Footprints of Monetary Policies"

by Miranda-Aggripino, Nenova, Rey

Ben Schumann 54th Konstanz Seminar

May 25, 2023

Is a great read

("[...] EMEs, which are hit by a double whammy", "[...] financial markets dance to the same tune")

And also

- Extends **Global factor (GF) in asset prices** across space (and time) \rightarrow service to profession \checkmark
- Estimates new **GFs of global capital flows** \rightarrow service to profession \checkmark
- Produces the prettiest pictures I have ever seen in a paper

1/17

Is a great read

("[...] EMEs, which are hit by a double whammy", "[...] financial markets dance to the same tune") And also

- ▶ Extends **Global factor (GF) in asset prices** across space (and time) \rightarrow service to profession \checkmark
- ▶ Estimates new **GFs of global capital flows** \rightarrow service to profession \checkmark
- Produces the prettiest pictures I have ever seen in a paper

1/17

Is a great read

("[...] EMEs, which are hit by a double whammy", "[...] financial markets dance to the same tune") And also

- ▶ Extends **Global factor (GF) in asset prices** across space (and time) \rightarrow service to profession \checkmark
- ▶ Estimates new **GFs of global capital flows** \rightarrow service to profession \checkmark
- Produces the prettiest pictures I have ever seen in a paper

Is a great read

("[...] EMEs, which are hit by a double whammy", "[...] financial markets dance to the same tune")

And also

- ▶ Extends **Global factor (GF) in asset prices** across space (and time) \rightarrow service to profession \checkmark
- ▶ Estimates new GFs of global capital flows → service to profession \checkmark
- Produces the prettiest pictures I have ever seen in a paper

1/17

The paper (continued)

- Separates factors into "financial" and "real" (commodity & trade & growth) factors
- Reconfirms results of Miranda-Agrippino and Rey [2020] on global reach of <u>US MP</u>
- Estimates the effects of Chinese (CN) MP
- "Compares" the effects of US monetary policy and CN monetary policy
 - * CN MP rather propagate via "real" channels → commodity & trade & growth
 - * US MP rather propagate via "financial" channels \rightarrow risk aversion & US-\$

This discussion: Mainly focuses on this "comparison".

argue that:

- Combining (all) factors with SVAR could "drive home" the story of **real vs financial giant**
- ▶ We **should compare "apples and apples"** in order to make judgements on different MP effects
- Estimates could speak to global financial cycle vs dollar cycle question

The paper (continued)

- Separates factors into "financial" and "real" (commodity & trade & growth) factors
- Reconfirms results of Miranda-Agrippino and Rey [2020] on global reach of US MP
- Estimates the effects of Chinese (CN) MP
- "Compares" the effects of US monetary policy and CN monetary policy
 - * CN MP rather propagate via "real" channels →commodity & trade & growth
 - * US MP rather propagate via "financial" channels \rightarrow risk aversion & US-\$

This discussion: Mainly focuses on this "comparison".

I argue that:

- Combining (all) factors with SVAR could "drive home" the story of real vs financial giant
- > We should compare "apples and apples" in order to make judgements on different MP effects
- Estimates could speak to global financial cycle vs dollar cycle question

Compelling story of the paper

- There are these 2 different types of factors (real and financial)
- ► There are these 2 different types of "giants" in the global economy
- > Policy of one giant rather transmits via real and for the other one via financial channels

My first thoughts:

- Real "giant's" monetary policy: Stronger impact on real factors
- Financial "giant's" monetary policy: Stronger impact on financial factors

But we never see this "culmination" of the separate sections in action. Why?

Conjecture: Because (as of now) analysis does not allow to judge which impact is "stronger"?

 \rightarrow Next slides

Compelling story of the paper

- There are these 2 different types of factors (real and financial)
- ► There are these 2 different types of "giants" in the global economy
- > Policy of one giant rather transmits via real and for the other one via financial channels

My first thoughts:

- Real "giant's" monetary policy: Stronger impact on real factors
- Financial "giant's" monetary policy: Stronger impact on financial factors

But we never see this "culmination" of the separate sections in action. Why?

Conjecture: Because (as of now) analysis does not allow to judge which impact is "stronger"?

 \rightarrow Next slides

Compelling story of the paper

- There are these 2 different types of factors (real and financial)
- ► There are these 2 different types of "giants" in the global economy
- > Policy of one giant rather transmits via real and for the other one via financial channels

My first thoughts:

- Real "giant's" monetary policy: Stronger impact on real factors
- Financial "giant's" monetary policy: Stronger impact on financial factors

But we never see this "culmination" of the separate sections in action. Why?

Conjecture: Because (as of now) analysis does not allow to judge which impact is "stronger"?

\rightarrow Next slides

Compelling story of the paper

- There are these 2 different types of factors (real and financial)
- ► There are these 2 different types of "giants" in the global economy
- > Policy of one giant rather transmits via real and for the other one via financial channels

My first thoughts:

- Real "giant's" monetary policy: Stronger impact on real factors
- Financial "giant's" monetary policy: Stronger impact on financial factors

But we never see this "culmination" of the separate sections in action. Why?

Conjecture: Because (as of now) analysis does not allow to judge which impact is "stronger"?

\rightarrow Next slides

This paper fits really nicely into one of the major themes of this century

US vs. CN: Who is dominating the political landscape and the global economy?

'we compare the global effects of US monetary policy with [...] surprise changes in the Chinese monetary policy stance"

So which central bank is more powerful?

This paper fits really nicely into one of the major themes of this century

US vs. CN: Who is dominating the political landscape and the global economy?

"we compare the global effects of US monetary policy with [...] surprise changes in the Chinese monetary policy stance"

This paper fits really nicely into one of the major themes of this century

US vs. CN: Who is dominating the political landscape and the global economy?

"we compare the global effects of US monetary policy with [...] surprise changes in the Chinese monetary policy stance"

So which central bank is more powerful?

This paper fits really nicely into one of the major themes of this century:

US vs. CN: Who is dominating the political landscape and the global economy?

"we **compare** the global effects of US monetary policy with [...] surprise changes in the Chinese monetary policy stance"

But do we really **compare** apples and apples?

Towards comparing apples and apples

Some (unfortunate) differences between estimation and identification of US MP and CN MP shock

	US	CN	CN <u>New</u>
Normalization	100Bps	1% increase in MPS	100Bps
Identification	IV	Recursive "Taylor Rule"	"IV??"
Instrument	HF Δ of FF4	(cleaned) residual of MPS	Daily Δ of IRS
Information effects	Excluded	Included?	Included?

For CN: Pick your poison \rightarrow Next Slides: A proposal

Comparing the two CN identification schemes

"New" IV based approach yields many unintuitive estimates

 \rightarrow Stick with previous approach for this point of discussion

6/17

Exploiting the "Taylor-type rule"

(Former) Governor Zhou (2015): "The **objective** of the [...] **Chinese monetary** authority, [...] is that of **maintaining prices** and the **value of the Renminbi stable**, [...] and **promoting economic growth**"

My "Taylor-Type rule" interpretation of this is

$$mps_{t}^{cn} = \alpha_{1}\pi_{t}^{cn} + \alpha_{2}\widehat{RMB}_{t} + \alpha_{3}\widehat{Y}_{t}^{cn} + \sigma_{mp}^{cn}\epsilon_{t,mp}^{cn}$$

with *mps*^{cn} as the monetary policy stance.

 \rightarrow Arguably "easier" to defend set of zero restrictions on the policy rule (See: Arias et al. [2019])

Exploiting the "Taylor-type rule"

(Former) Governor Zhou (2015): "The **objective** of the [...] **Chinese monetary** authority, [...] is that of **maintaining prices** and the **value of the Renminbi stable**, [...] and **promoting economic growth**"

My "Taylor-Type rule" interpretation of this is

$$mps_{t}^{cn} = \alpha_{1}\pi_{t}^{cn} + \alpha_{2}\widehat{RMB}_{t} + \alpha_{3}\widehat{Y}_{t}^{cn} + \sigma_{mp}^{cn}\epsilon_{t,mp}^{cn}$$
(1)

with mps_t^{cn} as the monetary policy stance.

 \rightarrow Arguably "easier" to defend set of zero restrictions on the policy rule (See: Arias et al. [2019])

Which "Taylor-type rule" did the authors impose?

Judging from the IRFS, authors imposed the following ordering

- 1. Non-Moving Variables (y_t^{NM}): Prices, Output, World Variables, GF Capital Flows
- 2. Monetary policy stance indicator (mps_t^{cn})
- 3. Moving Variables (y_t^M): RMB, Commodity Prices, VIX, GF Asset Prices

Which structural policy rule does this imply?

#8/17

The structural policy rule implied by a Cholesky ordering

Disregarding the lagged terms, the authors write down the following system

$$\underbrace{\begin{bmatrix} y_t^{NM} \\ mps_t^{Cn} \\ y_t^{M} \end{bmatrix}}_{Y_t} = \underbrace{\begin{bmatrix} b_{1,1} & \mathbf{O} & \mathbf{O} \\ b_{2,1} & b_{2,2} & \mathbf{O} \\ b_{3,1} & b_{3,2} & b_{3,3} \end{bmatrix}}_{B} \underbrace{\begin{bmatrix} \boldsymbol{\varepsilon}_{t,1} \\ \boldsymbol{\varepsilon}_{t,mp}^{Cn} \\ \boldsymbol{\varepsilon}_{t,3} \end{bmatrix}}_{\boldsymbol{\varepsilon}}$$

Because B is lower triangular so is its inverse $(B^{-1} = A)$

After rearranging the MP equation such that it looks like a "Taylor-type rule"

$$mps_t^{cn} = -\frac{a_{2,1}}{a_{2,2}}y_t^{NM} + \frac{O}{a_{2,2}}y_t^M + \frac{1}{a_{2,2}}\epsilon_{t,mp}^{cn}$$

Summary

(2)

The structural policy rule implied by a Cholesky ordering

Disregarding the lagged terms, the authors write down the following system

$$\underbrace{\begin{bmatrix} y_t^{NM} \\ mps_t^{cn} \\ y_t^{M} \end{bmatrix}}_{Y_t} = \underbrace{\begin{bmatrix} b_{1,1} & 0 & 0 \\ b_{2,1} & b_{2,2} & 0 \\ b_{3,1} & b_{3,2} & b_{3,3} \end{bmatrix}}_{B} \underbrace{\begin{bmatrix} \varepsilon_{t,1} \\ \varepsilon_{t,mp}^{cn} \\ \varepsilon_{t,3} \end{bmatrix}}_{\epsilon}$$

Because B is lower triangular so is its inverse $(B^{-1} = A)$

$$\underbrace{\begin{bmatrix} a_{1,1} & \mathbf{O} & \mathbf{O} \\ a_{2,1} & a_{2,2} & \mathbf{O} \\ a_{3,1} & a_{3,2} & a_{3,3} \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} y_t^{NM} \\ mps_t^{Cn} \\ y_t^{M} \end{bmatrix}}_{Y_t} = \underbrace{\begin{bmatrix} \varepsilon_{t,1} \\ \varepsilon_{t,mp}^{Cn} \\ \varepsilon_{t,3} \end{bmatrix}}_{\epsilon}$$

After rearranging the MP equation such that it looks like a "Taylor-type rule"

$$mps_{t}^{cn} = -\frac{a_{2,1}}{a_{2,2}}y_{t}^{NM} + \frac{O}{a_{2,2}}y_{t}^{M} + \frac{1}{a_{2,2}}\epsilon_{t,mp}^{cn}$$

Summary

9/17

(4)

(3)

(2)

The "Taylor-type rule" implied by a Cholesky ordering

The rule implied by the Cholesky ordering

$$mps_{t}^{cn} = -\frac{a_{2,1}}{a_{2,2}}y_{t}^{NM} + \frac{O}{a_{2,2}}y_{t}^{M} + \frac{1}{a_{2,2}}\epsilon_{t,mp}^{cn}$$

and "Taylor-type rule" interpretation of Zhou (2015)

$$mps_{t}^{cn} = \alpha_{1}\pi_{t}^{cn} + \alpha_{2}\widehat{RMB}_{t} + \alpha_{3}\hat{Y}_{t}^{cn} + \sigma_{mp}^{cn}\epsilon_{t,mp}^{cn}$$

Thus: Cholesky implies \rightarrow structural rule governing the monetary policy stance indicator (MPS)

- includes all non-moving variables (prices, output, World variables, GF capital flows)
- excludes all moving variables (RMB, GF Asset Prices, VIX, etc)

(5)

The "Taylor-type rule" implied by a Cholesky ordering

The rule implied by the Cholesky ordering

$$mps_{t}^{cn} = -\frac{a_{2,1}}{a_{2,2}}y_{t}^{NM} + \frac{O}{a_{2,2}}y_{t}^{M} + \frac{1}{a_{2,2}}\epsilon_{t,mp}^{cn}$$

and "Taylor-type rule" interpretation of Zhou (2015)

$$mps_{t}^{cn} = \alpha_{1}\pi_{t}^{cn} + \alpha_{2}\widehat{RMB}_{t} + \alpha_{3}\hat{Y}_{t}^{cn} + \sigma_{mp}^{cn}\epsilon_{t,mp}^{cn}$$

Thus: Cholesky implies \rightarrow structural rule governing the monetary policy stance indicator (MPS)

- includes all non-moving variables (prices, output, World variables, GF capital flows)
- <u>excludes</u> all moving variables (RMB, GF Asset Prices, VIX, etc)

(5)

What would former governor Zhou say?

Hold on! Was that really my intention?

Comment 2: Killing two birds with one stone

Instead of imposing recursive ordering for impact matrix B (or using an (endogenous?) IV),

- ▶ Divide Y_t into the policy variables in "Taylor-type rule" (y_t^P) and the <u>others</u> (y_t^O)
- **Impose** 'Taylor rule" of Zhou (2015) on the **structural matrix** $A = B^{-1}$ (See Arias et al. [2019])

$$\underbrace{\begin{bmatrix} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & 0 \\ a_{3,1} & a_{3,2} & a_{3,3} \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} y_t^P \\ mps_t^{Cn} \\ y_t^O \end{bmatrix}}_{Y_t} = \underbrace{\begin{bmatrix} \varepsilon_{t,1} \\ \varepsilon_{t,mp}^{cn} \\ \varepsilon_{t,3} \end{bmatrix}}_{\epsilon}$$

One can show that

$$A^{-1} = B = \begin{bmatrix} b_{1,1} & b_{1,2} & b_{1,3} \\ b_{2,1} & b_{2,2} & b_{2,3} \\ b_{2,1} & b_{2,2} & b_{2,3} \end{bmatrix}$$

Pro: *B* is a full matrix \rightarrow **CN** MP shock (like US) has contemporaneous effect on all variables

Con: Set identification instead of point identification

Comment 2: Killing two birds with one stone

Instead of imposing recursive ordering for impact matrix B (or using an (endogenous?) IV),

- Divide Y_t into the policy variables in "Taylor-type rule" (y_t^P) and the <u>others</u> (y_t^O)
- **Impose** 'Taylor rule" of Zhou (2015) on the **structural matrix** $A = B^{-1}$ (See Arias et al. [2019])

$$\underbrace{\begin{bmatrix} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & 0 \\ a_{3,1} & a_{3,2} & a_{3,3} \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} y_t^P \\ mps_t^{Cn} \\ y_t^O \end{bmatrix}}_{Y_t} = \underbrace{\begin{bmatrix} \varepsilon_{t,1} \\ \varepsilon_{t,mp}^{cn} \\ \varepsilon_{t,3} \end{bmatrix}}_{\epsilon}$$

One can show that

$$A^{-1} = B = \begin{bmatrix} b_{1,1} & b_{1,2} & b_{1,3} \\ b_{2,1} & b_{2,2} & b_{2,3} \\ b_{2,1} & b_{2,2} & b_{2,3} \end{bmatrix}$$

Pro: *B* is a full matrix \rightarrow **CN** MP shock (like US) has contemporaneous effect on all variables

Con: Set identification instead of point identification

Comment 2: Killing two birds with one stone

Instead of imposing recursive ordering for impact matrix B (or using an (endogenous?) IV),

- Divide Y_t into the policy variables in "Taylor-type rule" (y_t^P) and the <u>others</u> (y_t^O)
- **Impose** 'Taylor rule" of Zhou (2015) on the **structural matrix** $A = B^{-1}$ (See Arias et al. [2019])

$$\underbrace{\begin{bmatrix} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & 0 \\ a_{3,1} & a_{3,2} & a_{3,3} \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} y_t^P \\ mps_t^{Cn} \\ y_t^O \end{bmatrix}}_{Y_t} = \underbrace{\begin{bmatrix} \varepsilon_{t,1} \\ \varepsilon_{t,mp}^{cn} \\ \varepsilon_{t,3} \end{bmatrix}}_{\epsilon}$$

One can show that

$$A^{-1} = B = \begin{bmatrix} b_{1,1} & b_{1,2} & b_{1,3} \\ b_{2,1} & b_{2,2} & b_{2,3} \\ b_{2,1} & b_{2,2} & b_{2,3} \end{bmatrix}$$

Pro: *B* is a full matrix \rightarrow **CN** MP shock (like US) has contemporaneous effect on all variables

Con: Set identification instead of point identification

Comment 3: Global financial cycle or dollar cycle?

What gives rise to this correlation and how does causality flow?

The GFCyc and the US-\$. How does causality flow?

Why are the US-\$ and the GFCyc so correlated?

Authors argue: Time varying aggregate risk aversion (TVARA) underlies the global factor (GFCyc)

GFCyc = f(time varying aggregate risk aversion)

To rationalize the correlation pattern

US-\$ = f(GFCyc and/or time varying aggregate risk aversion)

Authors: US-\$ and GFCyc as two separate amplifiers of global shocks

The transmission mechanism sketched in the paper

CN MP has little effect on TVARA and global financial cycle

CN MP: Effects on (global) output large, Effects on TVARA/GFCyc small

US MP: Effects on (global) output "small", Effects on TVARA/GFCyc large

15/17

The role of the US-\$ as a possible explanation

Georgiadis et al (2023): GFCyc and US-\$ not two separate amplifiers

US-\$ dominance in global financial architecture necessitates existence of GFCyc
Whatever moves US-\$, moves TVARA and thereby GFCyc

Possible explanation: CN MP small effects on TVARA and GFCyc as it does not move US-\$

The role of the US-\$ as a possible explanation

Georgiadis et al (2023): GFCyc and US-\$ not two separate amplifiers

- **US-\$ dominance** in global financial architecture **necessitates existence of GFCyc**
- Whatever moves US-\$, moves TVARA and thereby GFCyc

Possible explanation: CN MP small effects on TVARA and GFCyc as it does not move US-\$

The role of the US-\$ as a possible explanation

Georgiadis et al (2023): GFCyc and US-\$ not two separate amplifiers

- **US-\$ dominance** in global financial architecture **necessitates existence of GFCyc**
- Whatever moves US-\$, moves TVARA and thereby GFCyc

Possible explanation: CN MP small effects on TVARA and GFCyc as it does not move US-\$

Summary

This paper

- Is a great read and adds to a long line of research on spillovers and the GFC
- Extends existing estimates of global factors in asset prices (thanks!!)
- ▶ NEW: Provides estimates of global factors in capital flows (thanks!!)
- **NEW:** Estimates the effect of CN monetary policy shocks and compares to US counterpart

This discussion argues that

- ▶ Story could be improved by tying together factor and SVAR section → Real vs. financial "giant"
- Comparison of CN vs US MP could be improved by aligning estimation and identification
- Findings could be framed as reconfirming outstanding role of US-\$

Summary

This paper

- Is a great read and adds to a long line of research on spillovers and the GFC
- Extends existing estimates of global factors in asset prices (thanks!!)
- ▶ NEW: Provides estimates of global factors in capital flows (thanks!!)
- **NEW:** Estimates the effect of CN monetary policy shocks and compares to US counterpart

This discussion argues that

- ► Story could be improved by tying together factor and SVAR section → Real vs. financial "giant"
- Comparison of CN vs US MP could be improved by aligning estimation and identification
- Findings could be framed as reconfirming outstanding role of US-\$

- Jonas E Arias, Dario Caldara, and Juan F Rubio-Ramirez. The systematic component of monetary policy in svars: An agnostic identification procedure. *Journal of Monetary Economics*, 101:1–13, 2019.
- Silvia Miranda-Agrippino and Hélene Rey. Us monetary policy and the global financial cycle. *The Review of Economic Studies*, 87(6):2754–2776, 2020.