The unequal economic consequences of carbon pricing

Konstanz Seminar on Monetary Theory and Monetary Policy

Diego R. Känzig Northwestern University May, 2023

- Looming climate crisis put climate change at top of the global policy agenda
- Carbon pricing increasingly used as a tool to mitigate climate change but:
- Little known about effects on emissions and the economy in practice
 - Effectiveness?
 - Short-term economic costs?
 - Distributional consequences?

- New evidence from the European Emissions Trading Scheme (ETS), the largest carbon market in the world
- Exploit **institutional features** of the EU ETS and **high-frequency data** to estimate **aggregate** and **distributional** effects of **carbon pricing**
 - Cap-and-trade system: Market price for carbon, liquid futures markets
 - Regulations in the market **changed** considerably over time
 - Isolate exogenous variation by measuring carbon price change in tight window around policy events
 - Use as instrument to estimate dynamic causal effects of a carbon policy shock

- Carbon policy has significant effects on emissions and the economy
- A shock tightening the carbon pricing regime leads to
 - a significant increase in energy prices, persistent fall in emissions and uptick in green innovation
 - not without cost: economic activity falls, consumer prices increase
 - costs not borne equally across society: poor lower their consumption significantly, rich barely affected
- **Poor** not only more exposed because of **higher energy share**, also face a stronger **fall** in **income**

- Indirect effects via income and employment are key for the transmission
 - account for over 2/3 of the aggregate effect on consumption
- Climate-economy model with heterogeneity in energy shares, income incidence and MPCs can account for these facts
 - targeted fiscal policy can reduce economic costs of carbon pricing without compromising emission reductions

- Established in 2005, covers around 40% of EU GHG emissions
- Cap on total emissions covered by the system, reduced each year
- Emission allowances (EUA) allocated within the cap
 - free allocation
 - auctions
 - international credits
- Companies must surrender sufficient EUAs to cover their yearly emissions
 - enforced with heavy fines
- Allowances are traded on secondary markets (spot and futures markets)

- Establishment of EU ETS followed learning-by-doing process
- Three main phases, rules updated continuously
 - address market issues
 - expand system
 - improve efficiency
- Lots of regulatory events

Carbon price

Figure 1: EUA price

- Collected comprehensive list of regulatory update events
 - Decisions of European Commission
 - Votes of European Parliament
 - Judgments of European courts
- Of interest in this paper: regulatory news on the supply of allowances
 - National allocation plans
 - Auctions: timing and quantities
 - Use of international credits
- Identified 126 relevant events from 2005-2018

• Idea: Identify carbon policy surprises from changes in EUA futures price in tight window around regulatory event

$$CPSurprise_{t,d} = rac{F_{t,d}^{carbon} - F_{t,d-1}^{carbon}}{P_{t,d-1}^{elec}},$$

where $F_{t,d}$ is settlement price of the EUA front contract on event day d in month t and $P_{t,d-1}^{elec}$ is the wholesale electricity price on the day before

Carbon policy surprises

Figure 2: The carbon policy surprise series

Diagnostics

Alternative

- Carbon policy surprise series has good properties but still imperfect measure
 ⇒ Use it as an external instrument to estimate dynamic causal effects on variables of interest (Stock and Watson, 2012; Mertens and Ravn, 2013)
 Details
- For estimation I rely on VAR techniques given the short sample More

The aggregate effects of carbon pricing

Figure 3: Responses to carbon policy shock, normalized to increase HICP energy by 1% The solid line is the point estimate and the dark and light shaded areas are 68 and 90% confidence bands

- Energy prices play an important role in the transmission of carbon policy
 - Suggests that **power sector** largely **passes through** emissions cost to energy prices, in line with previous evidence
- Higher energy prices can have significant effects on the economy via direct and indirect channels
- Better understand transmission by mapping out responses of wider range of macro and financial variables using local projections

$$y_{i,t+h} = \beta_{h,0}^{i} + \psi_{h}^{i} CPShock_{t} + \beta_{h,1}^{i} y_{i,t-1} + \ldots + \beta_{h,p}^{i} y_{i,t-p} + \xi_{i,t,h}$$

The transmission to the macroeconomy

Figure 4: Effect on GDP and components

- Fall in GDP similar to industrial production
- Looking at components, fall driven by lower consumption and investment
 - magnitudes much larger than can be accounted for by direct effect via energy prices
 - indirect effects via income seem to be important
- Little response of financial variables and uncertainty

- Big debate on energy poverty amid Commission's 'Fit for 55' proposal
- Crucial to better understand the distributional effects crucial of carbon pricing
- Also helps to sharpen understanding of transmission channels at work

- Study heterogeneous effects of carbon pricing on households
- **Problem**: Household-level micro data not available at the EU level for long enough and regular sample
 - Focus on UK where high-quality micro data on income and expenditure is available
 - · Check external validity using data for Denmark and Spain

Living costs and food survey

- LCFS is the major UK survey on household spending
 - provides detailed information on **expenditure**, **income**, and household **characteristics**
 - fielded every year but interview date allows to construct quarterly measures
- I compile a repeated cross-section spanning the period 1999 to 2018
- To estimate effects, I use a **grouping estimator** using **normal disposable income** as the grouping variable:
 - Low-income: Bottom 25%
 - Middle-income: Middle 50%
 - High-income: Top 25%

Heterogeneity by income group

Heterogeneity by income group

Heterogeneity by income group

19

	Overall	By income group		
		Low-income	Middle-income	High-income
Expenditure				
Energy	23.88	28.36	22.53	22.11
	[-16.93, 64.69]	[8.21, 48.51]	[-18.02, 63.07]	[-0.96, 45.17]
Non-durables	-103.75	-134.76	-92.33	-95.60
excl. energy	[-212.38, 4.87]	[-241.21, -28.32]	[-192.67, 8.02]	[-279.87, 88.67]
Durables	-6.95	-2.92	-0.44	-23.99
	[-56.09, 42.20]	[-20.75, 14.92]	[-10.37, 9.50]	[-71.44, 23.45]
Income				
	-203.70	-214.90	-138.65	-322.60
	[-387.13, -20.27]	[-376.38, -53.41]	[-301.82, 24.52]	[-635.44, -9.77]

	Overall	By income group		
		Low-income	Middle-income	High-income
Expenditure				
Energy	23.88 [-16.93, 64.69]	28.36 [8.21, 48.51]	22.53 [-18.02, 63.07]	22.11 [-0.96, 45.17]
Non-durables excl. energy	-103.75 [-212.38, 4.87]	-134.76 [-241.21, -28.32]	-92.33 [-192.67, 8.02]	-95.60 [-279.87, 88.67]
Durables	-6.95 [-56.09, 42.20]	-2.92 [-20.75, 14.92]	-0.44 [-10.37, 9.50]	-23.99 [-71.44, 23.45]
Income				
	-203.70	-214.90	-138.65	-322.60
	[-387.13, -20.27]	[-376.38, -53.41]	[-301.82, 24.52]	[-635.44, -9.77]

	Overall	By income group		
		Low-income	Middle-income	High-income
Expenditure				
Energy	23.88	28.36	22.53	22.11
	[-16.93, 64.69]	[8.21, 48.51]	[-18.02, 63.07]	[-0.96, 45.17]
Non-durables	-103.75	-134.76	-92.33	-95.60
excl. energy	[-212.38, 4.87]	[-241.21, -28.32]	[-192.67, 8.02]	[-279.87, 88.67]
Durables	-6.95	-2.92	-0.44	-23.99
	[-56.09, 42.20]	[-20.75, 14.92]	[-10.37, 9.50]	[-71.44, 23.45]
Income				
	-203.70	-214.90	-138.65	-322.60
	[-387.13, -20.27]	[-376.38, -53.41]	[-301.82, 24.52]	[-635.44, -9.77]

	Overall	By income group		
		Low-income	Middle-income	High-income
Expenditure				
Energy	23.88 [-16.93, 64.69]	28.36 [8.21, 48.51]	22.53 [-18.02, 63.07]	22.11 [-0.96, 45.17]
Non-durables excl. energy	-103.75 [-212.38, 4.87]	-134.76 [-241.21, -28.32]	-92.33 [-192.67, 8.02]	-95.60 [-279.87, 88.67]
Durables	-6.95 [-56.09, 42.20]	-2.92 [-20.75, 14.92]	-0.44 [-10.37, 9.50]	-23.99 [-71.44, 23.45]
Income				
	-203.70	-214.90	-138.65	-322.60
	[-387.13, -20.27]	[-376.38, -53.41]	[-301.82, 24.52]	[-635.44,-9.77]

	Overall	By income group		
		Low-income	Middle-income	High-income
Expenditure				
Energy	23.88	28.36	22.53	22.11
	[-16.93, 64.69]	[8.21, 48.51]	[-18.02, 63.07]	[-0.96, 45.17]
Non-durables	-103.75	-134.76	-92.33	-95.60
excl. energy	[-212.38, 4.87]	[-241.21, -28.32]	[-192.67, 8.02]	[-279.87, 88.67]
Durables	-6.95	-2.92	-0.44	-23.99
	[-56.09, 42.20]	[-20.75, 14.92]	[-10.37, 9.50]	[-71.44, 23.45]
Income				
	-203.70	-214.90	-138.65	-322.60
	[-387.13, -20.27]	[-376.38, -53.41]	[-301.82, 24.52]	[-635.44, -9.77]

- Energy bill increases but **cannot** account for fall in expenditure, **indirect effects** via income seem important
 - account for over 2/3 of the aggregate consumption response
- Low-income households face larger increase in energy bill and stronger fall in income, have to adjust their expenditure more
 - Policy heavily regressive after accounting for indirect effects
 - Low-income households account for \sim 30% of the aggregate effect on consumption though they account for much smaller consumption share in normal times (\sim 15%)

Heterogeneity in income responses

Figure 5: Income response by sector of employment

Heterogeneity in income responses

Figure 5: Income response by sector of employment

Sectors	Overall	By income group		
		Low-income	Middle-income	High-income
Energy-intensity				
High	21.6	9.8	25.6	25.8
Lower	78.4	90.2	74.4	74.2
Demand-sensitivity				
High	30.5	49.0	27.2	18.1
Lower	69.5	51.0	72.8	81.9

Table 2: Sectoral distribution of employment

- Fiscal policies **targeted** to the **most affected** households can **reduce** the economic **costs** of climate change mitigation policy
 - To the extent that energy demand is **inelastic**, this should **not compromise** emission reductions
 - Intuition confirmed in heterogeneous agent climate-economy model

- Especially relevant given recent surge in European carbon prices
 - Distributional effects could threaten $\ensuremath{\textbf{public support}}$ of the policy

Suggestive evidence

Beyond the short term

• An often used argument for carbon prices is that it fosters **directed technological change**

Figure 6: Share of low-carbon patents

- Use **patent data** from the EPO, document significant increase in climate change mitigation patenting
- Key for longer-term transition to low-carbon economy

- New evidence on the **economic effects** of **carbon pricing** from the European carbon market
- Policy successful in reducing emissions, but comes at an economic cost
- These costs are **not borne equally** across society, policy is heavily **regressive** after accounting for **indirect** effects
- Targeted fiscal policy can reduce these costs without compromising emission reductions

Thank you!

Table 3: Regulatory update events (extract)

	Date	Event description	Туре
54	30/11/2012	Commission rules on temporary free allowances for power plants in Hungary	Free alloc.
55	25/01/2013	Update on free allocation of allowances in 2013	Free alloc.
56	28/02/2013	Free allocation of 2013 aviation allowances postponed	Free alloc.
57	25/03/2013	Auctions of aviation allowances not to resume before June	Auction
58	16/04/2013	The European Parliament voted against the Commission's back-loading proposal	Auction
59	05/06/2013	Commission submits proposal for international credit entitlements for 2013 to 2020	Intl. credits
60	03/07/2013	The European Parliament voted for the carbon market back-loading proposal	Auction
61	10/07/2013	Member states approve addition of sectors to the carbon leakage list for 2014	Free alloc.
62	30/07/2013	Update on industrial free allocation for phase III	Free alloc.
63	05/09/2013	Commission finalized decision on industrial free allocation for phase three	Free alloc.
64	26/09/2013	Update on number of aviation allowances to be auctioned in 2012	Auction

- Narrative account:
- Autocorrelation:
- Forecastability:
- Orthogonality:
- Background noise:

- Narrative account: \checkmark Accords well with accounts on historical episodes
- Autocorrelation:
- Forecastability:
- Orthogonality:
- Background noise:

- Narrative account: \checkmark Accords well with accounts on historical episodes
- Autocorrelation: \checkmark No evidence for autocorrelation (Ljung-Box p-val: 0.92)
- Forecastability:
- Orthogonality:
- Background noise:

- Narrative account: \checkmark Accords well with accounts on historical episodes
- Autocorrelation: \checkmark No evidence for autocorrelation (Ljung-Box p-val: 0.92)
- Forecastability: \checkmark Not forecastable by macroeconomic or financial variables
- Orthogonality:
- Background noise:

- Narrative account: \checkmark Accords well with accounts on historical episodes
- Autocorrelation: \checkmark No evidence for autocorrelation (Ljung-Box p-val: 0.92)
- Forecastability: \checkmark Not forecastable by macroeconomic or financial variables
- Orthogonality: \checkmark Uncorrelated with measures of other structural shocks $_{\rm (e.g. \ oil,}$

uncertainty, or fiscal shocks)

• Background noise:

▲ Back More

- Narrative account: \checkmark Accords well with accounts on historical episodes
- Autocorrelation: ✓ No evidence for autocorrelation (Ljung-Box p-val: 0.92)
- Forecastability: \checkmark Not forecastable by macroeconomic or financial variables
- Orthogonality: \checkmark Uncorrelated with measures of other structural shocks (e.g. oil, uncertainty, or fiscal shocks)
- Background noise: ✓ Variance on event days over 6 times larger than on control days

Autocorrelation

Figure 7: The autocorrelation function of the carbon policy surprise series

Table 4: Granger causality tests

Variable	p-value
Instrument	0.3279
EUA price	0.7060
HICP energy	0.7961
GHG emissions	0.6615
HICP	0.9949
Industrial production	0.7633
Two-year rate	0.5066
Unemployment rate	0.2473
Stock prices	0.7887
REER	0.1595
Oil price	0.3280
Joint	0.9339

Orthogonality

Shock	Source	ρ	p-value	п	Sample
Monthly measures					
Global oil market					
Oil supply	Kilian (2008) (extended)	-0.16	0.10	104	2005M05-2013M12
	Kilian (2009) (updated)	-0.00	0.97	164	2005M05-2018M12
	Caldara, Cavallo, and Iacoviello (2019)	-0.11	0.24	128	2005M05-2015M12
	Baumeister and Hamilton (2019)	-0.15	0.04	176	2005M05-2019M12
	Känzig (2021) (updated)	0.12	0.11	176	2005M05-2019M12
Global demand	Kilian (2009) (updated)	-0.09	0.27	164	2005M05-2018M12
	Baumeister and Hamilton (2019)	-0.07	0.35	176	2005M05-2019M12
Oil-specific demand	Kilian (2009) (updated)	0.10	0.21	164	2005M05-2018M12
Consumption demand	Baumeister and Hamilton (2019)	0.13	0.10	176	2005M05-2019M12
Inventory demand	Baumeister and Hamilton (2019)	0.02	0.78	176	2005M05-2019M12
Monetary policy					
Monetary policy shock	Jarociński and Karadi (2020)	0.08	0.32	140	2005M05-2016M12
Central bank info	Jarociński and Karadi (2020)	0.07	0.40	140	2005M05-2016M12
Financial & uncertainty					
Financial conditions	BBB spread residual	-0.04	0.61	176	2005M05-2019M12
Financial uncertainty	VIX residual (Bloom, 2009)	-0.05	0.48	176	2005M05-2019M12
	VSTOXX residual	-0.06	0.43	176	2005M05-2019M12
Policy uncertainty	Global EPU (Baker, Bloom, and Davis, 2016)	-0.07	0.37	176	2005M05-2019M12
Quarterly measures					
Fiscal policy	Euro area (Alloza, Burriel, and Pérez, 2019)	0.08	0.60	43	2005Q2-2015Q4
. ,	Germany	0.24	0.12	43	2005Q2-2015Q4
	France	-0.03	0.85	43	2005Q2-2015Q4
	Italy	0.05	0.74	43	2005Q2-2015Q4
	Spain	0.14	0.36	43	2005Q2-2015Q4

Notes: The table shows the correlation of the carbon policy surprise series with a wide range of different shock measures from the literature, including global oil market shocks, monetary policy, financial and uncertainty shocks. ρ is the Pearson correlation coefficient, the p-value corresponds to the test whether the correlation is different from zero and n is the sample size.

Background noise

Notes: This figure shows the carbon policy surprise series together with the surprise series constructed on a selection of control days that do not contain a regulatory announcement but are otherwise similar.

Change in carbon price relative to electricity prices

$$CPSurprise_{t,d} = F_{t,d} - F_{t,d-1}$$

Figure 9: The carbon policy surprise series

External instrument approach

• Structural VAR

$$\mathbf{y}_t = \mathbf{b} + \mathbf{B}_1 \mathbf{y}_{t-1} + \cdots + \mathbf{B}_{\rho} \mathbf{y}_{t-\rho} + \mathbf{S} \boldsymbol{\varepsilon}_t, \qquad \boldsymbol{\varepsilon}_t \sim N(0, \Omega)$$

- External instrument: variable *z_t* correlated with the **shock of interest** but *not* with the **other shocks**
- Identifying assumptions:

$$\begin{split} \mathbb{E}[z_t \varepsilon_{1,t}] &= \alpha \neq 0 & (\text{Relevance}) \\ \mathbb{E}[z_t \varepsilon_{2:n,t}] &= 0, & (\text{Exogeneity}) \\ u_t &= \mathsf{S}\varepsilon_t & (\text{Invertibility}) \end{split}$$

• Use carbon policy surprise series as external instrument for energy price

Internal instrument approach

- Augment VAR by external instrument: $\bar{\mathbf{y}}_t = (z_t, \ \mathbf{y}_t')'$

$$ar{\mathsf{y}}_t = \mathsf{b} + \mathsf{B}_1 ar{\mathsf{y}}_{t-1} + \dots + \mathsf{B}_p ar{\mathsf{y}}_{t-p} + \mathsf{S} arepsilon_t, \qquad arepsilon_t \sim \mathcal{N}(0,\Omega)$$

Identifying assumptions:

$$\begin{split} \mathbb{E}[z_t \varepsilon_{1,t}] &= \alpha \neq 0 & (\text{Relevance}) \\ \mathbb{E}[z_t \varepsilon_{2:n,t}] &= 0, & (\text{Contemporaneous exogeneity}) \\ \mathbb{E}[z_t \varepsilon_{t+j}] &= 0, & \text{for } j \neq 0 & (\text{Lead-lag exogeneity}) \end{split}$$

 Robust to non-invertibility but instrument has to be orthogonal to leads and lags of structural shocks

Local projections versus internal instrument approach

- 8 variable system, euro area data:
 - Carbon block: HICP^1 energy, total GHG emissions
 - **Macro block**: headline HICP, industrial production, unemployment rate, policy rate, stock market index, REER
- 6 lags as controls
- Estimation sample: 1999M1-2018M12

▶ Data

¹HICP: Harmonized index of consumer prices

Data

I Back

Internal versus external instrument approach

Responses to oil supply news shock

First stage regression: F-statistic: 5.74, R²: 2.85%

Responses to oil supply news shock

Model with carbon price

Figure 11: Model including carbon spot price

Historical importance

Figure 12: Historical decomposition of emissions growth

- Carbon policy shocks have contributed meaningfully to historical variations in energy prices, emissions and macro variables
- But: Did not account for the fall in emissions following the global financial crisis
 - supports the validity of the identified shock

h	HICP energy	Emissions	HICP	IP	Two-year rate	Unemp. rate	Stock prices	Oil price
Pane	el A: Forecast var	iance decomposi	ition (SVAR-IV)					
6	0.38	0.12	0.46	0.02	0.04	0.05	0.02	0.22
	[0.03, 0.49]	[0.02, 0.42]	[0.04, 0.57]	[0.01, 0.30]	[0.01, 0.24]	[0.00, 0.33]	[0.01, 0.31]	[0.01, 0.33]
12	0.31	0.18	0.32	0.05	0.08	0.08	0.03	0.20
	[0.03, 0.41]	[0.02, 0.43]	[0.03, 0.46]	[0.02, 0.33]	[0.01, 0.22]	[0.01, 0.37]	[0.01, 0.33]	[0.02, 0.31]
24	0.30	0.22	0.23	0.13	0.08	0.18	0.04	0.20
	[0.03, 0.38]	[0.02, 0.39]	[0.02, 0.39]	[0.02, 0.34]	[0.02, 0.21]	[0.01, 0.43]	[0.01, 0.31]	[0.02, 0.27]
36	0.28	0.20	0.18	0.16	0.08	0.23	0.04	0.16
	[0.03, 0.35]	[0.02, 0.36]	[0.02, 0.35]	[0.02, 0.33]	[0.02, 0.21]	[0.01, 0.44]	[0.02, 0.31]	[0.02, 0.24]
Fore	cast variance rati	o (SVMA-IV)						
6	0.04, 0.21	0.01, 0.06	0.04, 0.21	0.00, 0.01	0.03, 0.14	0.00, 0.01	0.00, 0.02	0.01, 0.08
	[0.01, 0.39]	[0.00, 0.25]	[0.01, 0.40]	[0.00, 0.17]	[0.01, 0.37]	[0.00, 0.15]	[0.00, 0.19]	[0.01, 0.24]
12	0.03, 0.15	0.03, 0.15	0.03, 0.15	0.01, 0.03	0.03, 0.18	0.00, 0.01	0.01, 0.04	0.01, 0.06
	[0.01, 0.36]	[0.00, 0.45]	[0.01, 0.39]	[0.00, 0.27]	[0.01, 0.41]	[0.00, 0.21]	[0.00, 0.27]	[0.01, 0.26]
24	0.02, 0.13	0.04, 0.23	0.02, 0.11	0.02, 0.10	0.03, 0.19	0.02, 0.09	0.01, 0.06	0.01, 0.06
	[0.01, 0.36]	[0.00, 0.50]	[0.00, 0.39]	[0.00, 0.32]	[0.02, 0.38]	[0.00, 0.33]	[0.00, 0.31]	[0.01, 0.26]
36	0.02, 0.12	0.04, 0.21	0.02, 0.09	0.02, 0.13	0.04, 0.20	0.03, 0.14	0.01, 0.06	0.01, 0.06
	[0.01, 0.33]	[0.00, 0.46]	[0.00, 0.36]	[0.00, 0.32]	[0.02, 0.38]	[0.00, 0.38]	[0.01, 0.31]	[0.01, 0.26]

Table 5: Variance decomposition

Model with carbon price

First stage regression: F-statistic: 9.54, R^2 : 4.06%

To better understand **role** of **power sector** perform event study using daily futures and stock prices

$$q_{i,d+h} - q_{i,d-1} = \beta_{h,0}^i + \psi_h^i CPSurprise_d + \beta_{h,1}^i \Delta q_{i,d-1} + \ldots + \beta_{h,p}^i \Delta q_{i,d-p} + \xi_{i,d,h}$$

- $q_{i,d+h}$: (log) price of asset *i*, *h* days after event *d*
- *CPSurprise_d*: carbon policy surprise on event day
- ψ_h^i : effect on asset price *i* at horizon *h*

The role of energy prices

Figure 14: Carbon price and stock market indices

- Carbon futures prices increase significantly after carbon policy surprise
- Stock market does not respond on impact but only falls with a lag
- Utilities sector is the only sector displaying a positive response
 - Supports interpretation that utilities sector **passes through** emissions cost to their customers

Foreign exchange and trade

Figure 15: Effect on foreign exchange and trade

Table 6: Descriptive statistics on households in the LCFS

	Overall	By income group			
		Low-income	Middle-income	High-income	
Income and expenditure					
Normal disposable income	6,748	3,740	6,807	10,866	
Total expenditure	4,458	3,025	4,444	6,238	
Energy share	7.2	9.5	7.2	5.2	
Non-durables (excl. energy) share	81.5	81.6	81.6	81.3	
Durables share	11.2	8.9	11.2	13.5	
Household characteristics					
Age	51	47	54	49	
Education (share with post-comp.)	34.0	25.7	29.7	51.2	
Housing tenure					
Social renters	20.8	46.9	17.4	3.7	
Mortgagors	42.3	25.5	41.3	60.0	
Outright owners	36.9	27.7	41.3	36.4	

Table 6: Descriptive statistics on households in the LCFS

	Overall	By income group			
		Low-income	Middle-income	High-income	
Income and expenditure					
Normal disposable income	6,748	3,740	6,807	10,866	
Total expenditure	4,458	3,025	4,444	6,238	
Energy share	7.2	9.5	7.2	5.2	
Non-durables (excl. energy) share	81.5	81.6	81.6	81.3	
Durables share	11.2	8.9	11.2	13.5	
Household characteristics					
Age	51	47	54	49	
Education (share with post-comp.)	34.0	25.7	29.7	51.2	
Housing tenure					
Social renters	20.8	46.9	17.4	3.7	
Mortgagors	42.3	25.5	41.3	60.0	
Outright owners	36.9	27.7	41.3	36.4	

Energy versus non-energy expenditure

Group differences

Group by expenditure

Group by permanent income

Group by age

Group by education

Group by housing tenure

▲ Back

External validity

- Significant heterogeneity in income responses
- Potential explanations:
 - Heterogeneity in labor income because of differences in employment sector More
 - Differences in income composition: labor versus. financial income
 More

Heterogeneity by sector of employment

Figure 16: Income response by sector of employment

Sectors	Overall	By income group			
		Low-income	Middle-income	High-income	
Energy-intensity					
High	21.6	9.8	25.6	25.8	
Lower	78.4	90.2	74.4	74.2	
Demand-sensitivity					
High	30.5	49.0	27.2	18.1	
Lower	69.5	51.0	72.8	81.9	

Table 7: Sectoral distribution of employment

Table 8: Sectors by energy intensity and demand sensitivity

Group	Sectors	SIC sections
High energy intensity	Agriculture, forestry, and fishing; mining and quarrying; manufacturing; electricity, gas and water supply (utilities); transport, storage and com- munications	A-E, I
Lower energy intensity	Construction; Wholesale and retail trade; Hotels and restaurants; Financial intermediation; Real estate, renting and business; Public administration and defense; Education; Health and social work; Other community, social and personal services	F-H, J-Q
High demand sensitivity	Construction; Wholesale and retail trade; Hotels and restaurants; Other community, social and personal services	F-H, O-Q
Lower demand sensitivity	Agriculture, forestry, and fishing; mining and quarrying; manufacturing; electricity, gas and water supply (utilities); transport, storage and com- munications; Financial intermediation; Real estate, renting and business; Public administration and defense; Education; Health and social work	A-E, J-N

▲ Back

Earnings and financial income

▲ Back

Energy expenditure

Figure 17: Energy expenditure and energy share by income group

- To study role of **redistributing** auction revenues, build a **climate-economy model** to use as a laboratory
- · Climate-economy model with nominal rigidities and household heterogeneity
 - Energy sector producing energy/emissions using labor
 - Non-energy NK sector producing consumption good using energy, labor and capital
 - Two households: hand-to-mouth and savers differing in energy expenditure shares, income incidence and MPCs. Idiosyncratic risk as households switch between types
- Calibrated to match key micro and macro moments

Model details

Redistributing carbon revenues

Figure 18: Responses to carbon tax shock

Redistributing carbon revenues

Figure 19: Responses to carbon tax shock

- Model can match the estimated (peak) magnitudes in the data
 - Heterogeneity plays a crucial role,
 - In RA model implausibly high energy share needed to match magnitudes
- Redistributing tax revenues to hand-to-mouth can
 - reduce inequality and attenuate aggregate effect on consumption
 - while emissions only change little

Households

- Two types of households: λ hand-to-mouth H and $1-\lambda$ savers S
- · Hand-to-mouth live paycheck to paycheck, consume all their income
- · Savers choose consumption intertemporally, save/invest in capital and bonds
- · Households subject to idiosyncratic risk: switch between types
 - probability to stay saver s, probability to stay hand-to-mouth h
- · Only risk-free bonds are liquid and can be used to self-insure
- · Centralized labor market structure: union sets wages

$$w_t = \varphi h_t^{\theta} \left(\lambda \frac{1}{p_{H,t}} U_x(x_{H,t}, h_t) + (1-\lambda) \frac{1}{p_{S,t}} U_x(x_{S,t}, h_t) \right)^{-1}$$

Model details

- Savers maximize lifetime utility $\mathbb{E}_0\left[\sum_{t=0}^{\infty}\beta^t U(x_{S,t}, h_t)\right]$ subject to budget constraint and capital accumulation
- Consumption good is composite of energy and non-energy good $\frac{e_{x}}{e_{x}}$

$$x_{S,t} = \left(a_{S,c}^{\frac{1}{\epsilon_{X}}}c_{S,t}^{\frac{\epsilon_{X}-1}{\epsilon_{X}}} + a_{S,e}^{\frac{1}{\epsilon_{X}}}e_{S,t}^{\frac{\epsilon_{X}-1}{\epsilon_{X}}}\right)^{\frac{\epsilon_{X}}{\epsilon_{X}}}$$

• Optimizing behavior

$$c_{S,t} = a_{S,c} \left(\frac{1}{\rho_{S,t}}\right)^{-\epsilon_x} x_{S,t}$$

$$e_{S,t} = a_{S,e} \left(\frac{\rho_{e,t}}{\rho_{S,t}}\right)^{-\epsilon_x} x_{S,t}$$

$$\lambda_{S,t} = \beta \mathbb{E}_t \left[(1 + (1 - \tau^k)r_{t+1} - \delta)\lambda_{S,t+1} \right]$$

$$\lambda_{S,t} = \beta \mathbb{E}_t \left[\frac{R_t^b}{\Pi_{t+1}} (s\lambda_{S,t+1} + (1 - s)\lambda_{H,t+1}) \right]$$

• Hand-to-mouth are constrained, just exhaust their budget in every period

$$c_{H,t} = a_{H,c} \left(\frac{1}{p_{s,t}}\right)^{-\epsilon_{x}} x_{H,t}$$
$$e_{H,t} = a_{H,e} \left(\frac{p_{e,t}}{p_{s,t}}\right)^{-\epsilon_{x}} x_{H,t}$$

 $p_{H,t}x_{H,t} = y_{H,t}$

Model details

Firms

• Energy producers, subject to carbon tax au_t

$$e_t = a_{e,t}h_{e,t}$$

 $w_t = (1 - \tau_t)p_{e,t}rac{e_t}{h_{e,t}}$

• Consumption good producers

$$y_{t} = e^{-\gamma s_{t}} \left[(1-\nu)^{\frac{1}{\epsilon_{y}}} \left(a_{t} k_{t}^{\alpha} h_{y,t}^{1-\alpha} \right)^{\frac{\epsilon_{y}-1}{\epsilon_{y}}} + \nu^{\frac{1}{\epsilon_{y}}} \left(e_{y,t} \right)^{\frac{\epsilon_{y}-1}{\epsilon_{y}}} \right]^{\frac{\epsilon_{y}}{\epsilon_{y}-1}}$$

$$r_{t} = \alpha v_{1,t} m c_{t} \frac{y_{t}}{k_{t}}$$

$$w_{t} = (1-\alpha) v_{1,t} m c_{t} \frac{y_{t}}{h_{y,t}}$$

$$p_{e,t} = v_{2,t} m c_{t} \frac{y_{t}}{e_{y,t}}$$

$$\hat{\pi}_{t} = \kappa \hat{m} c_{t} + \beta E_{t} \hat{\pi}_{t+1}$$

Climate block

$$s_t = (1 - \varphi)s_{t-1} + \varphi_0 e_t$$

Fiscal and monetary policy

$$\lambda \omega_{H,t} = \tau^d d_t + \tau^k r_t^K k_t + \mu \tau_t p_{e,t} e_t$$

(1 - λ) $\omega_{S,t} = (1 - \mu) \tau_t p_{e,t} e_t$
 $\tau_t = (1 - \rho_\tau) \tau + \rho_\tau \tau_{t-1} + \epsilon_{\tau,t}$
 $\hat{r}_t^b = \rho_r \hat{r}_{t-1}^b + (1 - \rho_r) (\phi_\pi \hat{\pi}_{\tau,t} + \phi_y \hat{y}_t) + \epsilon_{mp,t}$

◀ Back

Calibration

Parameter	Description	Value	Target/Source
β	Discount factor	0.99	Standard value
$1/\sigma$	Intertemporal elasticity of substitution	1	Standard value
1/ heta	Labor supply elasticity	1	Standard value
λ	Share of hand-to-mouth	0.25	Share of low-income households, LCFS
1 - s	Probability of becoming H	0.04	Bilbiie (2020)
a _{H,e}	Distribution parameter H	0.078	Energy share of 9.5%, LCFS
as,e	Distribution parameter S	0.056	Energy share of 6.5%, LCFS
ϵ_{xH}	Elasticity of substitution energy/non-energy H	0.05	LCFS, Labandeira, Labeaga, and López-Otero (2017)
ϵ_{xS}	Elasticity of substitution energy/non-energy S	0.275	LCFS, Labandeira, Labeaga, and López-Otero (2017)
ϵ_y	Elasticity of substitution energy/non-energy firms	0.21	Labandeira, Labeaga, and López-Otero (2017)
δ	Depreciation rate	0.025	Smets and Wouters (2003)
α	Capital returns-to-scale	0.3	Standard value
ν	Energy returns-to-scale	0.07	Steady-state energy share of $pprox$ 7%; Eurostat
ϵ_p	Price elasticity	6	Steady-state markup of 20%; Christopoulou and Vermeulen (2012)
θ_p	Calvo parameter	0.825	Average price duration of 5-6 quarters; Alvarez et al. (2006)
γ	Climate damage parameter	$5.3 * 10^{-5}$	Golosov et al. (2014)
φ_0	Emissions staying in atmosphere	0.5359	Golosov et al. (2014)
1-arphi	Emissions decay parameter	0.9994	Golosov et al. (2014)
ϕ_{π}	Taylor rule coefficient inflation	1.5	Smets and Wouters (2003)
ρr	Interest smoothing	0.8	Smets and Wouters (2003)
au	Steady-state carbon tax	0.039	Implied tax rate from average EUA price
ρ_{τ}	Persistence carbon tax shock	0.85	Mean-reversion of approx. 20 quarters

Role of heterogeneity

Figure 20: Responses to carbon tax shock

Role of monetary policy

Figure 21: Responses to carbon tax shock

Attitudes towards climate policy

Figure 22: Effect on attitude towards climate policy by income group

No effect on innovation for oil shocks

Figure 23: Share of low-carbon patents

Check robustness with respect to

- Selection of events: robust to just using NAP/auction events, robust to dropping largest events
- **Background noise**: robust to controlling for confounding news using a heteroskedasticity-based approach
- **Sample and specification choices**: robust to estimating on shorter sample, to lag order, and to using a smaller system to estimate effects

▶ Details

Excluding events regarding cap

First stage regression: F-statistic: 18.97, R²: 3.09%

Excluding events regarding international credits

First stage regression: F-statistic: 11.99, $R^2{:}$ 1.79%

Only using events regarding NAPs

First stage regression: F-statistic: 13.46, R^2 : 1.97%

Excluding extreme events

First stage regression: F-statistic: 17.43, R^2 : 2.85%

Heteroskedasticity-based identification

2005-2018 sample

First stage regression: F-statistic: 6.44, R²: 2.49%

Responses from smaller VAR

First stage regression: F-statistic: 6.72, R²: 1.82%

VAR with 3 lags

First stage regression: F-statistic: 7.72, R²: 1.79%

VAR with 9 lags

First stage regression: F-statistic: 17.51, R²: 2.75%